Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
43 result(s) for "Hunt, Jeremy P"
Sort by:
Comprehensive analysis of kinase inhibitor selectivity
Davis et al . extend their previous efforts to use inhibitor-kinase interactions to understand kinase inhibitor selectivity by profiling the binding of 72 kinase inhibitors to 442 human kinase catalytic domains. The data reveal group-specific differences in selectivity and suggest the feasibility of developing reasonably specific inhibitors for most kinases. We tested the interaction of 72 kinase inhibitors with 442 kinases covering >80% of the human catalytic protein kinome. Our data show that, as a class, type II inhibitors are more selective than type I inhibitors, but that there are important exceptions to this trend. The data further illustrate that selective inhibitors have been developed against the majority of kinases targeted by the compounds tested. Analysis of the interaction patterns reveals a class of 'group-selective' inhibitors broadly active against a single subfamily of kinases, but selective outside that subfamily. The data set suggests compounds to use as tools to study kinases for which no dedicated inhibitors exist. It also provides a foundation for further exploring kinase inhibitor biology and toxicity, as well as for studying the structural basis of the observed interaction patterns. Our findings will help to realize the direct enabling potential of genomics for drug development and basic research about cellular signaling.
Dual kinase-bromodomain inhibitors for rationally designed polypharmacology
Kinases are a widely targeted enzyme class in cancer chemotherapy. Several clinically used kinase inhibitors also inhibit bromodomains, epigenetic ‘readers’ of acetylated lysine residues, suggesting that kinase-bromodomain polypharmacology may offer benefits in therapeutic settings. Concomitant inhibition of multiple cancer-driving kinases is an established strategy to improve the durability of clinical responses to targeted therapies. The difficulty of discovering kinase inhibitors with an appropriate multitarget profile has, however, necessitated the application of combination therapies, which can pose major clinical development challenges. Epigenetic reader domains of the bromodomain family have recently emerged as new targets for cancer therapy. Here we report that several clinical kinase inhibitors also inhibit bromodomains with therapeutically relevant potencies and are best classified as dual kinase-bromodomain inhibitors. Nanomolar activity on BRD4 by BI-2536 and TG-101348, which are clinical PLK1 and JAK2-FLT3 kinase inhibitors, respectively, is particularly noteworthy as these combinations of activities on independent oncogenic pathways exemplify a new strategy for rational single-agent polypharmacological targeting. Furthermore, structure-activity relationships and co-crystal structures identify design features that enable a general platform for the rational design of dual kinase-bromodomain inhibitors.
A quantitative analysis of kinase inhibitor selectivity
Kinase inhibitors are a new class of therapeutics with a propensity to inhibit multiple targets 1 , 2 . The biological consequences of multi-kinase activity are poorly defined, and an important step toward understanding the relationship between selectivity, efficacy and safety is the exploration of how inhibitors interact with the human kinome 2 , 3 , 4 . We present interaction maps for 38 kinase inhibitors across a panel of 317 kinases representing >50% of the predicted human protein kinome. The data constitute the most comprehensive study of kinase inhibitor selectivity to date and reveal a wide diversity of interaction patterns. To enable a global analysis of the results, we introduce the concept of a selectivity score as a general tool to quantify and differentiate the observed interaction patterns. We further investigate the impact of panel size and find that small assay panels do not provide a robust measure of selectivity.
Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia
Internal tandem duplication mutations in FLT3, known to be associated with a poor prognosis in acute myeloid leukaemia, are now shown to be a valid therapeutic target for the disease. FLT3 a target in leukaemia Activating internal tandem duplication FLT3 mutations are relatively frequent in acute myeloid leukaemia (AML). Although they are associated with poor prognosis, it has remained unclear whether they play a causal part in the development of AML. In a study of AC220 (quizartinib), an FLT3 kinase inhibitor that is currently being evaluated in clinical trials for people with AML, Neil Shah and colleagues have identified secondary mutations in FLT3 that confer resistance to AC220. The mutations are present in cell lines and in people treated with AC220 who have relapsed after an initial response, and seem to act by preventing FLT3 inhibitor binding. This study establishes FLT3 as a potential target in a subset of AML cases. Effective targeted cancer therapeutic development depends upon distinguishing disease-associated ‘driver’ mutations, which have causative roles in malignancy pathogenesis, from ‘passenger’ mutations, which are dispensable for cancer initiation and maintenance. Translational studies of clinically active targeted therapeutics can definitively discriminate driver from passenger lesions and provide valuable insights into human cancer biology. Activating internal tandem duplication (ITD) mutations in FLT3 ( FLT3-ITD ) are detected in approximately 20% of acute myeloid leukaemia (AML) patients and are associated with a poor prognosis 1 . Abundant scientific 2 and clinical evidence 1 , 3 , including the lack of convincing clinical activity of early FLT3 inhibitors 4 , 5 , suggests that FLT3-ITD probably represents a passenger lesion. Here we report point mutations at three residues within the kinase domain of FLT3-ITD that confer substantial in vitro resistance to AC220 (quizartinib), an active investigational inhibitor of FLT3, KIT, PDGFRA, PDGFRB and RET 6 , 7 ; evolution of AC220-resistant substitutions at two of these amino acid positions was observed in eight of eight FLT3-ITD -positive AML patients with acquired resistance to AC220. Our findings demonstrate that FLT3-ITD can represent a driver lesion and valid therapeutic target in human AML. AC220-resistant FLT3 kinase domain mutants represent high-value targets for future FLT3 inhibitor development efforts.
Highly-automated, high-throughput replication of yeast-based logic circuit design assessments
Abstract We describe an experimental campaign that replicated the performance assessment of logic gates engineered into cells of Saccharomyces cerevisiae by Gander et al. Our experimental campaign used a novel high-throughput experimentation framework developed under Defense Advanced Research Projects Agency’s Synergistic Discovery and Design program: a remote robotic lab at Strateos executed a parameterized experimental protocol. Using this protocol and robotic execution, we generated two orders of magnitude more flow cytometry data than the original experiments. We discuss our results, which largely, but not completely, agree with the original report and make some remarks about lessons learned. Graphical Abstract
Correction: Corrigendum: Dual kinase-bromodomain inhibitors for rationally designed polypharmacology
Nat. Chem. Biol. 10, 305–313 (2014); published online 2 March 2014; corrected after print 4 April 2014 In the version of this paper originally published, funding from the Wellcome Trust to P.F. and S.P. was not acknowledged. The acknowledgments have been corrected in the HTML and PDF versions of thearticle.
Highly-Automated, High-Throughput Replication of Yeast-based Logic Circuit Design Assessments
We describe an experimental campaign that replicated the performance assessment of logic gates engineered into cells of S. cerevisiae by Gander, et al. Our experimental campaign used a novel high throughput experimentation framework developed under DARPA’s Synergistic Discovery and Design (SD2) program: a remote robotic lab at Strateos executed a parameterized experimental protocol. Using this protocol and robotic execution, we generated two orders of magnitude more flow cytometry data than the original experiments. We discuss our results, which largely, but not completely, agree with the original report, and make some remarks about lessons learned.
DCAF4, a novel gene associated with leucocyte telomere length
Background Leucocyte telomere length (LTL), which is fashioned by multiple genes, has been linked to a host of human diseases, including sporadic melanoma. A number of genes associated with LTL have already been identified through genome-wide association studies. The main aim of this study was to establish whether DCAF4 (DDB1 and CUL4-associated factor 4) is associated with LTL. In addition, using ingenuity pathway analysis (IPA), we examined whether LTL-associated genes in the general population might partially explain the inherently longer LTL in patients with sporadic melanoma, the risk for which is increased with ultraviolet radiation (UVR). Results Genome-wide association (GWA) meta-analysis and de novo genotyping of 20 022 individuals revealed a novel association (p=6.4×10−10) between LTL and rs2535913, which lies within DCAF4. Notably, eQTL analysis showed that rs2535913 is associated with decline in DCAF4 expressions in both lymphoblastoid cells and sun-exposed skin (p=4.1×10−3 and 2×10−3, respectively). Moreover, IPA revealed that LTL-associated genes, derived from GWA meta-analysis (N=9190), are over-represented among genes engaged in melanoma pathways. Meeting increasingly stringent p value thresholds (p<0.05, <0.01, <0.005, <0.001) in the LTL-GWA meta-analysis, these genes were jointly over-represented for melanoma at p values ranging from 1.97×10−169 to 3.42×10−24. Conclusions We uncovered a new locus associated with LTL in the general population. We also provided preliminary findings that suggest a link of LTL through genetic mechanisms with UVR and melanoma in the general population.