Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
168 result(s) for "Hunter, C. Neil"
Sort by:
Cryo-EM structure of the spinach cytochrome b6 f complex at 3.6 Å resolution
The cytochrome b 6   f (cyt b 6   f  ) complex has a central role in oxygenic photosynthesis, linking electron transfer between photosystems I and II and converting solar energy into a transmembrane proton gradient for ATP synthesis 1 – 3 . Electron transfer within cyt b 6   f  occurs via the quinol (Q) cycle, which catalyses the oxidation of plastoquinol (PQH 2 ) and the reduction of both plastocyanin (PC) and plastoquinone (PQ) at two separate sites via electron bifurcation 2 . In higher plants, cyt b 6   f  also acts as a redox-sensing hub, pivotal to the regulation of light harvesting and cyclic electron transfer that protect against metabolic and environmental stresses 3 . Here we present a 3.6 Å resolution cryo-electron microscopy (cryo-EM) structure of the dimeric cyt b 6   f complex from spinach, which reveals the structural basis for operation of the Q cycle and its redox-sensing function. The complex contains up to three natively bound PQ molecules. The first, PQ1, is located in one cyt b 6   f  monomer near the PQ oxidation site (Q p ) adjacent to haem b p and chlorophyll a . Two conformations of the chlorophyll a phytyl tail were resolved, one that prevents access to the Q p site and another that permits it, supporting a gating function for the chlorophyll a involved in redox sensing. PQ2 straddles the intermonomer cavity, partially obstructing the PQ reduction site (Q n ) on the PQ1 side and committing the electron transfer network to turnover at the occupied Q n site in the neighbouring monomer. A conformational switch involving the haem c n propionate promotes two-electron, two-proton reduction at the Q n site and avoids formation of the reactive intermediate semiquinone. The location of a tentatively assigned third PQ molecule is consistent with a transition between the Q p and Q n sites in opposite monomers during the Q cycle. The spinach cyt b 6   f  structure therefore provides new insights into how the complex fulfils its catalytic and regulatory roles in photosynthesis. A 3.6 Å resolution cryo-electron microscopy structure of the dimeric cytochrome b 6 f complex from spinach reveals the structural basis for operation of the quinol cycle and its redox-sensing function.
A photosynthetic antenna complex foregoes unity carotenoid-to-bacteriochlorophyll energy transfer efficiency to ensure photoprotection
Carotenoids play a number of important roles in photosynthesis, primarily providing light-harvesting and photoprotective energy dissipation functions within pigment–protein complexes. The carbon–carbon double bond (C=C) conjugation length of carotenoids (N), generally between 9 and 15, determines the carotenoid-to-(bacterio)chlorophyll [(B)Chl] energy transfer efficiency. Here we purified and spectroscopically characterized light-harvesting complex 2 (LH2) from Rhodobacter sphaeroides containing the N = 7 carotenoid zeta (ζ)-carotene, not previously incorporated within a natural antenna complex. Transient absorption and time-resolved fluorescence show that, relative to the lifetime of the S₁ state of ζ-carotene in solvent, the lifetime decreases ∼250-fold when ζ-carotene is incorporated within LH2, due to transfer of excitation energy to the B800 and B850 BChls a. These measurements show that energy transfer proceeds with an efficiency of ∼100%, primarily via the S₁ → Qₓ route because the S₁ → S₀ fluorescence emission of ζ-carotene overlaps almost perfectly with the Qₓ absorption band of the BChls. However, transient absorption measurements performed on microsecond timescales reveal that, unlike the native N ≥ 9 carotenoids normally utilized in light-harvesting complexes, ζ-carotene does not quench excited triplet states of BChl a, likely due to elevation of the ζ-carotene triplet energy state above that of BChl a. These findings provide insights into the coevolution of photosynthetic pigments and pigment–protein complexes. We propose that the N ≥ 9 carotenoids found in light-harvesting antenna complexes represent a vital compromise that retains an acceptable level of energy transfer from carotenoids to (B)Chls while allowing acquisition of a new, essential function, namely, photoprotective quenching of harmful (B)Chl triplets.
The structure and assembly of reaction centre-light-harvesting 1 complexes in photosynthetic bacteria
Chlorophototrophic organisms have a charge-separating reaction centre (RC) complex that receives energy from a dedicated light-harvesting (LH) antenna. In the purple phototrophic bacteria, these two functions are embodied by the ‘core’ photosynthetic component, the RC-LH1 complex. RC-LH1 complexes sit within a membrane bilayer, with the central RC wholly or partly surrounded by a curved array of LH1 subunits that bind a series of bacteriochlorophyll (BChl) and carotenoid pigments. Decades of research have shown that the absorption of light initiates a cascade of energy, electron, and proton transfers that culminate in the formation of a quinol, which is subsequently oxidized by the cytochrome bc1 complex. However, a full understanding of all these processes, from femtosecond absorption of light to millisecond quinone diffusion, requires a level of molecular detail that was lacking until the remarkable recent upsurge in the availability of RC-LH1 structures. Here, we survey 13 recently determined RC-LH1 assemblies, and we compare the precise molecular arrangements of pigments and proteins that allow efficient light absorption and the transfer of energy, electrons and protons. We highlight shared structural features, as well as differences that span the bound pigments and cofactors, the structures of individual subunits, the overall architecture of the complexes, and the roles of additional subunits newly identified in just one or a few species. We discuss RC-LH1 structures in the context of prior biochemical and spectroscopic investigations, which together enhance our understanding of the molecular mechanisms of photosynthesis in the purple phototrophic bacteria. A particular emphasis is placed on how the remarkable and unexpected structural diversity in RC-LH1 complexes demonstrates different evolutionary solutions for maximising pigment density for optimised light harvesting, whilst balancing the requirement for efficient quinone diffusion between RC and cytochrome bc1 complexes through the encircling LH1 complex.
Overall energy conversion efficiency of a photosynthetic vesicle
The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome b c 1 complex (cyt b ⁢ c 1 ) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12–0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination. Photosynthesis, or the conversion of light energy into chemical energy, is a process that powers almost all life on Earth. Plants and certain bacteria share similar processes to perform photosynthesis, though the purple bacterium Rhodobacter sphaeroides uses a photosynthetic system that is much less complex than that in plants. Light harvesting inside the bacterium takes place in up to hundreds of compartments called chromatophores. Each chromatophore in turn contains hundreds of cooperating proteins that together absorb the energy of sunlight and convert and store it in molecules of ATP, the universal energy currency of all cells. The chromatophore of primitive purple bacteria provides a model for more complex photosynthetic systems in plants. Though researchers had characterized its individual components over the years, less was known about the overall architecture of the chromatophore and how its many components work together to harvest light energy efficiently and robustly. This knowledge would provide insight into the evolutionary pressures that shaped the chromatophore and its ability to work efficiently at different light intensities. Sener et al. now present a highly detailed structural model of the chromatophore of purple bacteria based on the findings of earlier studies. The model features the position of every atom of the constituent proteins and is used to examine how energy is transferred and converted. Sener et al. describe the sequence of energy conversion steps and calculate the overall energy conversion efficiency, namely how much of the light energy arriving at the microorganism is stored as ATP. These calculations show that the chromatophore is optimized to produce chemical energy at low light levels typical of purple bacterial habitats, and dissipate excess energy to avoid being damaged under brighter light. The chromatophore’s architecture also displays robustness against perturbations of its components. In the future, the approach used by Sener et al. to describe light harvesting in this bacterial compartment can be applied to more complex systems, such as those in plants.
Lateral Segregation of Photosystem I in Cyanobacterial Thylakoids
Photosystem I (PSI) is the dominant photosystem in cyanobacteria and it plays a pivotal role in cyanobacterial metabolism. Despite its biological importance, the native organization of PSI in cyanobacterial thylakoid membranes is poorly understood. Here, we use atomic force microscopy (AFM) to show that ordered, extensive macromolecular arrays of PSI complexes are present in thylakoids from Thermosynechococcus elongatus, Synechococcus sp PCC 7002, and Synechocystis sp PCC 6803. Hyperspectral confocal fluorescence microscopy and three-dimensional structured illumination microscopy of Synechocystis sp PCC 6803 cells visualize PSI domains within the context of the complete thylakoid system. Crystallographic and AFM data were used to build a structural model of a membrane landscape comprising 96 PSI trimers and 27,648 chlorophyll a molecules. Rather than facilitating intertrimer energy transfer, the close associations between PSI primarily maximize packing efficiency; short-range interactions with Complex I and cytochrome b 6 f are excluded from these regions of the membrane, so PSI turnover is sustained by long-distance diffusion of the electron donors at the membrane surface. Elsewhere, PSI-photosystem II contact zones provide sites for docking phycobilisomes and the formation of megacomplexes. PSI-enriched domains in cyanobacteria might foreshadow the partitioning of PSI into stromal lamellae in plants, similarly sustained by long-distance diffusion of electron carriers.
Chromosome-free bacterial cells are safe and programmable platforms for synthetic biology
A type of chromosome-free cell called SimCells (simple cells) has been generated from Escherichia coli, Pseudomonas putida, and Ralstonia eutropha. The removal of the native chromosomes of these bacteria was achieved by double-stranded breaks made by heterologous I-CeuI endonuclease and the degradation activity of endogenous nucleases. We have shown that the cellular machinery remained functional in these chromosome-free SimCells and was able to process various genetic circuits. This includes the glycolysis pathway (composed of 10 genes) and inducible genetic circuits. It was found that the glycolysis pathway significantly extended longevity of SimCells due to its ability to regenerate ATP and NADH/NADPH. The SimCells were able to continuously express synthetic genetic circuits for 10 d after chromosome removal. As a proof of principle, we demonstrated that SimCells can be used as a safe agent (as they cannot replicate) for bacterial therapy. SimCells were used to synthesize catechol (a potent anticancer drug) from salicylic acid to inhibit lung, brain, and soft-tissue cancer cells. SimCells represent a simplified synthetic biology chassis that can be programmed to manufacture and deliver products safely without interference from the host genome.
Three classes of oxygen-dependent cyclase involved in chlorophyll and bacteriochlorophyll biosynthesis
The biosynthesis of (bacterio)chlorophyll pigments is among the most productive biological pathways on Earth. Photosynthesis relies on these modified tetrapyrroles for the capture of solar radiation and its conversion to chemical energy. (Bacterio)chlorophylls have an isocyclic fifth ring, the formation of which has remained enigmatic for more than 60 y. This reaction is catalyzed by two unrelated cyclase enzymes using different chemistries. The majority of anoxygenic phototrophic bacteria use BchE, an O₂-sensitive [4Fe-4S] cluster protein, whereas plants, cyanobacteria, and some phototrophic bacteria possess an O₂-dependent enzyme, the major catalytic component of which is a diiron protein, AcsF. Plant and cyanobacterial mutants in ycf54 display impaired function of the O₂-dependent enzyme, accumulating the reaction substrate. Swapping cyclases between cyanobacteria and purple phototrophic bacteria reveals three classes of the O₂-dependent enzyme. AcsF from the purple betaproteobacterium Rubrivivax (Rvi.) gelatinosus rescues the loss not only of its cyanobacterial ortholog, cycI, in Synechocystis sp. PCC 6803, but also of ycf54; conversely, coexpression of cyanobacterial cycI and ycf54 is required to complement the loss of acsF in Rvi. gelatinosus. These results indicate that Ycf54 is a cyclase subunit in oxygenic phototrophs, and that different classes of the enzyme exist based on their requirement for an additional subunit. AcsF is the cyclase in Rvi. gelatinosus, whereas alphaproteobacterial cyclases require a newly discovered protein that we term BciE, encoded by a gene conserved in these organisms. These data delineate three classes of O₂-dependent cyclase in chlorophototrophic organisms from higher plants to bacteria, and their evolution is discussed herein.
Progress and challenges in engineering cyanobacteria as chassis for light‐driven biotechnology
Summary Cyanobacteria are prokaryotic phototrophs that, in addition to being excellent model organisms for studying photosynthesis, have tremendous potential for light‐driven synthetic biology and biotechnology. These versatile and resilient microorganisms harness the energy of sunlight to oxidise water, generating chemical energy (ATP) and reductant (NADPH) that can be used to drive sustainable synthesis of high‐value natural products in genetically modified strains. In this commentary article for the Synthetic Microbiology Caucus we discuss the great progress that has been made in engineering cyanobacterial hosts as microbial cell factories for solar‐powered biosynthesis. We focus on some of the main areas where the synthetic biology and metabolic engineering tools in cyanobacteria are not as advanced as those in more widely used heterotrophic chassis, and go on to highlight key improvements that we feel are required to unlock the full power of cyanobacteria for future green biotechnology. Cyanobacteria are promising chassis for light‐driven biotechnology. In this commentary for the Synthetic Microbiology Caucus we discuss the great progress that has been made in engineering these microorganisms for solar‐powered biosynthesis. We also give our opinion on key areas where the synthetic biology toolkit must be improved in order to unleash the full potential of cyanobacterial cell factories.
Absolute quantification of cellular levels of photosynthesis-related proteins in Synechocystis sp. PCC 6803
Quantifying cellular components is a basic and important step for understanding how a cell works, how it responds to environmental changes, and for re-engineering cells to produce valuable metabolites and increased biomass. We quantified proteins in the model cyanobacterium Synechocystis sp. PCC 6803 given the general importance of cyanobacteria for global photosynthesis, for synthetic biology and biotechnology research, and their ancestral relationship to the chloroplasts of plants. Four mass spectrometry methods were used to quantify cellular components involved in the biosynthesis of chlorophyll, carotenoid and bilin pigments, membrane assembly, the light reactions of photosynthesis, fixation of carbon dioxide and nitrogen, and hydrogen and sulfur metabolism. Components of biosynthetic pathways, such as those for chlorophyll or for photosystem II assembly, range between 1000 and 10,000 copies per cell, but can be tenfold higher for CO 2 fixation enzymes. The most abundant subunits are those for photosystem I, with around 100,000 copies per cell, approximately 2 to fivefold higher than for photosystem II and ATP synthase, and 5–20 fold more than for the cytochrome b 6 f complex. Disparities between numbers of pathway enzymes, between components of electron transfer chains, and between subunits within complexes indicate possible control points for biosynthetic processes, bioenergetic reactions and for the assembly of multisubunit complexes.
Excitation energy transfer in proteoliposomes reconstituted with LH2 and RC-LH1 complexes from Rhodobacter sphaeroides
Light-harvesting 2 (LH2) and reaction-centre light-harvesting 1 (RC-LH1) complexes purified from the photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were reconstituted into proteoliposomes either separately, or together at three different LH2:RC-LH1 ratios, for excitation energy transfer studies. Atomic force microscopy (AFM) was used to investigate the distribution and association of the complexes within the proteoliposome membranes. Absorption and fluorescence emission spectra were similar for LH2 complexes in detergent and liposomes, indicating that reconstitution retains the structural and optical properties of the LH2 complexes. Analysis of fluorescence emission shows that when LH2 forms an extensive series of contacts with other such complexes, fluorescence is quenched by 52.6 ± 1.4%. In mixed proteoliposomes, specific excitation of carotenoids in LH2 donor complexes resulted in emission of fluorescence from acceptor RC-LH1 complexes engineered to assemble with no carotenoids. Extents of energy transfer were measured by fluorescence lifetime microscopy; the 0.72 ± 0.08 ns lifetime in LH2-only membranes decreases to 0.43 ± 0.04 ns with a ratio of 2:1 LH2 to RC-LH1, and to 0.35 ± 0.05 ns for a 1:1 ratio, corresponding to energy transfer efficiencies of 40 ± 14% and 51 ± 18%, respectively. No further improvement is seen with a 0.5:1 LH2 to RC-LH1 ratio. Thus, LH2 and RC-LH1 complexes perform their light harvesting and energy transfer roles when reconstituted into proteoliposomes, providing a way to integrate native, non-native, engineered and de novo designed light-harvesting complexes into functional photosynthetic systems.