Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
16
result(s) for
"Huo, Yan‐Miao"
Sort by:
SF3B1 mutation in pancreatic cancer contributes to aerobic glycolysis and tumor growth through a PP2A–c‐Myc axis
2021
Hot spot gene mutations in splicing factor 3b subunit 1 (SF3B1) are observed in many types of cancer and create abundant aberrant mRNA splicing, which is profoundly implicated in tumorigenesis. Here, we identified that the SF3B1 K700E (SF3B1K700E) mutation is strongly associated with tumor growth in pancreatic ductal adenocarcinoma (PDAC). Knockdown of SF3B1 significantly retarded cell proliferation and tumor growth in a cell line (Panc05.04) with the SF3B1K700E mutation. However, SF3B1 knockdown had no notable effect on cell proliferation in two cell lines (BxPC3 and AsPC1) carrying wild‐type SF3B1. Ectopic expression of SF3B1K700E but not SF3B1WT in SF3B1‐knockout Panc05.04 cells largely restored the inhibitory role induced by SF3B1 knockdown. Introduction of the SF3B1K700E mutation in BxPC3 and AsPC1 cells also boosted cell proliferation. Gene set enrichment analysis demonstrated a close correlation between SF3B1 mutation and aerobic glycolysis. Functional analyses showed that the SF3B1K700E mutation promoted tumor glycolysis, as evidenced by glucose consumption, lactate release, and extracellular acidification rate. Mechanistically, the SF3B1 mutation promoted the aberrant splicing of PPP2R5A and led to the activation of the glycolytic regulator c‐Myc via post‐translational regulation. Pharmacological activation of PP2A with FTY‐720 markedly compromised the growth advantage induced by the SF3B1K700E mutation in vitro and in vivo. Taken together, our data suggest a novel function for SF3B1 mutation in the Warburg effect, and this finding may offer a potential therapeutic strategy against PDAC with the SF3B1K700E mutation.
SF3B1 mutations have been previously implicated in tumorigenesis. Here, we investigate the role of SF3B1K700E mutation in pancreatic ductal adenocarcinoma (PDAC). SF3B1K700E led to aberrant splicing of PPP2R5A, coupled with c‐Myc activation higher aerobic glycolysis rate and growth advantage of tumor cells. Taken together, our data describe a novel function for SF3B1 K700E mutations in the Warburg effect. Inhibition of SF3B1 K700E mutation may potentially serve as a novel therapeutic strategy for patients with PDAC.
Journal Article
A Nutrient-Deficient Microenvironment Facilitates Ferroptosis Resistance via the FAM60A–PPAR Axis in Pancreatic Ductal Adenocarcinoma
2024
Ferroptosis, a nonapoptotic form of cell death, is an emerging potential therapeutic target for various diseases, including cancer. However, the role of ferroptosis in pancreatic cancer remains poorly understood. Pancreatic ductal adenocarcinoma (PDAC) is characterized by a poor prognosis and chemotherapy resistance, attributed to its high Kirsten rats arcomaviral oncogene homolog mutation rate and severe nutritional deficits resulting from a dense stroma. Several studies have linked rat sarcoma (RAS) mutations to ferroptosis, suggesting that inducing ferroptosis may be an effective strategy against oncogenic RAS-bearing tumors. We investigated the role of Family With Sequence Similarity 60 Member A (FAM60A) in this study, a protein closely associated with a poor prognosis and highly expressed in PDAC and tumor tissue from Kras G12D/+ ;Trp53 R172H/+ ; Pdx1-Cre mice, in regulating ferroptosis, tumor growth, and gemcitabine sensitivity in vitro and in vivo. Our results demonstrate that FAM60A regulates 3 essential metabolic enzymes, ACSL1/4 and GPX4, to protect PDAC cells from ferroptosis. Furthermore, we found that YY1 transcriptionally regulates FAM60A expression by promoting its transcription, and the Hippo-YY1 pathway is restricted in the low-amino-acid milieu in the context of nutrient deprivation, leading to downstream suppression of peroxisome proliferator-activated receptor and ACSL1/4 and activation of GPX4 pathways. Importantly, FAM60A knockdown sensitized PDAC cells to gemcitabine treatment. A new understanding of FAM60A transcriptional regulation pattern in PDAC and its dual function in ferroptosis reliever and chemotherapy resistance is provided by our study. Targeting FAM60A may therefore offer a promising therapeutic approach for PDAC by simultaneously addressing 2 major features of the disease (high RAS mutation rate and tumor microenvironment nutrient deficiency) and preventing tumor cell metabolic adaptation.
Journal Article
The lncRNA LINC01605 promotes the progression of pancreatic ductal adenocarcinoma by activating the mTOR signaling pathway
2024
Background
This study investigated the molecular mechanism of long intergenic non-protein coding RNA 1605 (LINC01605) in the process of tumor growth and liver metastasis of pancreatic ductal adenocarcinoma (PDAC).
Methods
LINC01605 was filtered out with specificity through TCGA datasets (related to DFS) and our RNA-sequencing data of PDAC tissue samples from Renji Hospital. The expression level and clinical relevance of LINC01605 were then verified in clinical cohorts and samples by immunohistochemical staining assay and survival analysis. Loss- and gain-of-function experiments were performed to estimate the regulatory effects of LINC01605 in vitro. RNA-seq of LINC01605-knockdown PDAC cells and subsequent inhibitor-based cellular function, western blotting, immunofluorescence and rescue experiments were conducted to explore the mechanisms by which LINC01605 regulates the behaviors of PDAC tumor cells. Subcutaneous xenograft models and intrasplenic liver metastasis models were employed to study its role in PDAC tumor growth and liver metastasis in vivo.
Results
LINC01605 expression is upregulated in both PDAC primary tumor and liver metastasis tissues and correlates with poor clinical prognosis. Loss and gain of function experiments in cells demonstrated that LINC01605 promotes the proliferation and migration of PDAC cells in vitro. In subsequent verification experiments, we found that LINC01605 contributes to PDAC progression through cholesterol metabolism regulation in a LIN28B-interacting manner by activating the mTOR signaling pathway. Furthermore, the animal models showed that LINC01605 facilitates the proliferation and metastatic invasion of PDAC cells in vivo.
Conclusions
Our results indicate that the upregulated lncRNA LINC01605 promotes PDAC tumor cell proliferation and migration by regulating cholesterol metabolism via activation of the mTOR signaling pathway in a LIN28B-interacting manner. These findings provide new insight into the role of LINC01605 in PDAC tumor growth and liver metastasis as well as its value for clinical approaches as a metabolic therapeutic target in PDAC.
Journal Article
B4GALT5 inhibits CD8+ T-cell response by downregulating MHC-I level through ERAD pathway in PDAC
2025
BackgroundImmune evasion is a crucial event in the progression of pancreatic ductal adenocarcinoma (PDAC). The identification of new immunotherapeutic targets may provide a promising platform for advancing PDAC treatment. This study aims to investigate the role of beta-1,4-galactosyltransferase-5 (B4GALT5) in immune evasion by pancreatic cancer cells and evaluate its potential as an immunotherapeutic target.MethodsWe conducted a comprehensive analysis using RNA sequencing data and tissue microarrays from patients with PDAC to investigate the association between B4GALT5 expression and patient prognosis. Using animal models, we further explored the impact of B4GALT5 on the quantity and activity of tumor-infiltrating CD8+ T cells. RNA sequencing and co-immunoprecipitation were used to explore the mechanism by which B4GALT5 regulates major histocompatibility complex (MHC-I) levels.ResultsOur study demonstrates that high expression of B4GALT5 in tumor cells is significantly associated with poor prognosis in patients with PDAC and reduced cytotoxic activity of tumor-infiltrating CD8+ T cells. Specifically, B4GALT5 suppresses MHC-I expression in tumor cells through the endoplasmic reticulum-associated degradation pathway, enabling them to evade immune surveillance by CD8+ T cells.ConclusionsB4GALT5 impairs CD8+ T-cell recognition of tumor cells by regulating MHC-I levels, thereby promoting immune evasion. This makes B4GALT5 a highly promising immunotherapeutic target for improving the poor prognosis of patients with PDAC.
Journal Article
Single-cell RNA sequencing reveals that targeting HSP90 suppresses PDAC progression by restraining mitochondrial bioenergetics
2021
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, which lacks effective treatment strategies. There is an urgent need for the development of new strategies for PDAC therapy. The genetic and phenotypic heterogeneity of PDAC cancer cell populations poses further challenges in the clinical management of PDAC. In this study, we performed single-cell RNA sequencing to characterize PDAC tumors from KPC mice. Functional studies and clinical analysis showed that PDAC cluster 2 cells with highly Hsp90 expression is much more aggressive than the other clusters. Genetic and pharmacologic inhibition of Hsp90 impaired tumor cell growth both in vitro and in vivo. Further mechanistic study revealed that HSP90 inhibition disrupted the interaction between HSP90 and OPA1, leading to a reduction in mitochondrial cristae amount and mitochondrial energy production. Collectively, our study reveals that HSP90 might be a potential therapeutic target for PDAC.
Journal Article
Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment
by
Yang, Jian
,
Liu, De-Jun
,
Zhu, Yu-Heng
in
Biomedical and Life Sciences
,
Biomedicine
,
Cancer Research
2023
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is characterized by poor treatment response and low survival time. The current clinical treatment for advanced PDAC is still not effective. In recent years, the research and application of immunotherapy have developed rapidly and achieved substantial results in many malignant tumors. However, the translational application in PDAC is still far from satisfactory and needs to be developed urgently. To carry out the study of immunotherapy, it is necessary to fully decipher the immune characteristics of PDAC. This review summarizes the recent progress of the tumor microenvironment (TME) of PDAC and highlights its link with immunotherapy. We describe the molecular cues and corresponding intervention methods, collate several promising targets and progress worthy of further study, and put forward the importance of integrated immunotherapy to provide ideas for future research of TME and immunotherapy of PDAC.
Journal Article
Analysis of cuproptosis-related lncRNA signature for predicting prognosis and tumor immune microenvironment in pancreatic cancer
2023
Pancreatic cancer (PC) is a highly malignant digestive tract tumor, with a dismal 5-year survival rate. Recently, cuproptosis was found to be copper-dependent cell death. This work aims to establish a cuproptosis-related lncRNA signature which could predict the prognosis of PC patients and help clinical decision-making. Firstly, cuproptosis-related lncRNAs were identified in the TCGA-PAAD database. Next, a cuproptosis-related lncRNA signature based on five lncRNAs was established. Besides, the ICGC cohort and our samples from 30 PC patients served as external validation groups to verify the predictive power of the risk signature. Then, the expression of CASC8 was verified in PC samples, scRNA-seq dataset CRA001160, and PC cell lines. The correlation between CASC8 and cuproptosis-related genes was validated by Real-Time PCR. Additionally, the roles of CASC8 in PC progression and immune microenvironment characterization were explored by loss-of-function assay. As showed in the results, the prognosis of patients with higher risk scores was prominently worse than that with lower risk scores. Real-Time PCR and single cell analysis suggested that CASC8 was highly expressed in pancreatic cancer and related to cuproptosis. Additionally, gene inhibition of CASC8 impacted the proliferation, apoptosis and migration of PC cells. Furthermore, CASC8 was demonstrated to impact the expression of CD274 and several chemokines, and serve as a key indicator in tumor immune microenvironment characterization. In conclusion, the cuproptosis-related lncRNA signature could provide valuable indications for the prognosis of PC patients, and CASC8 was a candidate biomarker for not only predicting the progression of PC patients but also their antitumor immune responses.
Journal Article
Analysis of long non-coding RNA expression profiles in pancreatic ductal adenocarcinoma
2016
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most aggressive and lethal malignancies. Long non-coding RNAs (lncRNAs) are a novel class of non-protein-coding transcripts that have been implicated in cancer biogenesis and prognosis. By repurposing microarray probes, we herein analysed the lncRNA expression profiles in two public PDAC microarray datasets and identified 34 dysregulated lncRNAs in PDAC. In addition, the expression of 6 selected lncRNAs was confirmed in Ren Ji cohort and pancreatic cell lines, and their association with 80 PDAC patients’ clinicopathological features and prognosis was investigated. Results indicated that AFAP1-AS1, UCA1 and ENSG00000218510 might be involved in PDAC progression and significantly associated with overall survival of PDAC. UCA1 and ENSG00000218510 expression status may serve as independent prognostic biomarkers for overall survival of PDAC. Gene set enrichment analysis (GSEA) analysis suggested that high AFAP1-AS1, UCA1 and low ENSG00000218510 expression were correlated with several tumorigenesis related pathways. Functional experiments demonstrated that AFAP1-AS1 and UCA1 were required for efficient invasion and/or proliferation promotion in PDAC cell lines, while ENSG00000218510 acted the opposite. Our findings provide novel information on lncRNAs expression profiles which might be beneficial to the precise diagnosis, subcategorization and ultimately, the individualized therapy of PDAC.
Journal Article
OASL promotes immune evasion in pancreatic ductal adenocarcinoma by enhancing autolysosome-mediated degradation of MHC-I
by
Li, Dong-Xue
,
Zhang, Zhi-Gang
,
Li, Xia-Qing
in
Animals
,
Carcinoma, Pancreatic Ductal - genetics
,
Carcinoma, Pancreatic Ductal - immunology
2025
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a global prevalence and poor prognosis, largely due to immune escape mechanisms. However, the potential reasons for the decreased infiltration of cytotoxic T lymphocytes (CTLs) in PDAC remain inadequately understood. In this study, we aimed to elucidate the molecular mechanisms contributing to the low-CTLs infiltration in patients with PDAC.
Bioinformatic analyses were used to identify key factors associated with low-CTLs infiltration in PDAC and the role of oligoadenylate synthetase-like (OASL) was mainly focused in our study. Immunohistochemistry (IHC) was used to assess the relationship between the expression of OASL and the prognosis of patients. Western blotting, Flow cytometry, Co-immunoprecipitation and Immunofluorescence were applied to elucidate the molecular mechanism by which OASL mediates immune escape in PDAC. The orthotopic PDAC models were constructed to evaluate the effects of
-knockdown on CD8
T cells infiltration and tumor growth
OASL was found to be significantly upregulated in PDAC and negatively correlated with the major histocompatibility complex class I (MHC-I) expression, which is associated with worse patient prognosis. Notably,
knockdown leads to a significant increase in CD8
T cell infiltration and slows tumor growth
. Mechanistic studies revealed that
-knockdown restored the total and surface MHC-I level through impairing neighbor of BRCA1 gene 1 (NBR1)-mediated autophagy-lysosomal degradation of MHC-I.
Targeting OASL enhances the immune response in PDAC, providing a novel therapeutic strategy to improve outcomes in PDAC patients.
Journal Article
Decreased LKB1 predicts poor prognosis in Pancreatic Ductal Adenocarcinoma
2015
Liver kinase B1 (LKB1) has been identified as a critical modulator involved in cell proliferation and polarity. The purpose of the current study was to characterize the expression pattern of LKB1 and assess the clinical significance of LKB1 expression in pancreatic ductal adenocarcinoma (PDAC) patients. LKB1 mRNA expression which was analyzed in 32 PDAC lesions and matched non-tumor tissues, was downregulated in 50% (16/32) of PDAC lesions. Similar results were also obtained by analyzing three independent datasets from Oncomine. Protein expression of LKB1 was significantly reduced in 6 PDAC cell lines and downregulated in 31.3% (10/32) of PDAC lesions compared to matched non-tumorous tissues, as determined by Western blot analysis. Additionally, tissue microarray containing 205 PDAC specimens was evaluated for LKB1 expression by IHC and demonstrated that reduced expression of LKB1 in 17.6% (36/205) of PDAC tissues was significantly correlated with clinical stage, T classification, N classification, liver metastasis and vascular invasion. Importantly, Kaplan-Meier survival and Cox regression analyses were executed to evaluate the prognosis of PDAC and found that LKB1 protein expression was one of the independent prognostic factors for overall survival of PDAC patients.
Journal Article