Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
233 result(s) for "Hurst, Jane"
Sort by:
Reducing Mouse Anxiety during Handling: Effect of Experience with Handling Tunnels
Handling stress is a well-recognised source of variation in animal studies that can also compromise the welfare of research animals. To reduce background variation and maximise welfare, methods that minimise handling stress should be developed and used wherever possible. Recent evidence has shown that handling mice by a familiar tunnel that is present in their home cage can minimise anxiety compared with standard tail handling. As yet, it is unclear whether a tunnel is required in each home cage to improve response to handling. We investigated the influence of prior experience with home tunnels among two common strains of laboratory mice: ICR(CD-1) and C57BL/6. We compared willingness to approach the handler and anxiety in an elevated plus maze test among mice picked up by the tail, by a home cage tunnel or by an external tunnel shared between cages. Willingness to interact with the handler was much greater for mice handled by a tunnel, even when this was unfamiliar, compared to mice picked up by the tail. Once habituated to handling, C57BL/6 mice were most interactive towards a familiar home tunnel, whereas the ICR strain showed strong interaction with all tunnel handling regardless of any experience of a home cage tunnel. Mice handled by a home cage or external tunnel showed less anxiety in an elevated plus maze than those picked up by the tail. This study shows that using a tunnel for routine handling reduces anxiety among mice compared to tail handling regardless of prior familiarity with tunnels. However, as home cage tunnels can further improve response to handling in some mice, we recommend that mice are handled with a tunnel provided in their home cage where possible as a simple practical method to minimise handling stress.
Improving the practicality of using non-aversive handling methods to reduce background stress and anxiety in laboratory mice
Handling can stimulate stress and anxiety in laboratory animals that negatively impacts welfare and introduces a confounding factor in many areas of research. Picking up mice by the tail is a major source of handling stress that results in strong aversion to the handler, while mice familiarised with being picked up in a tunnel or cupped on the open hand show low stress and anxiety, and actively seek interaction with their handlers. Here we investigate the duration and frequency of handling required for effective familiarisation with these non-aversive handling methods, and test whether this is sufficient to prevent aversion and anxiety when animals then experience immobilisation and a mild procedure (subcutaneous injection). Very brief handling (2 s) was sufficient to familiarise mice with tunnel handling, even when experienced only during cage cleaning. Brief but more frequent handling was needed for familiarisation with cup handling, while pick up by tail induced strong aversion even when handling was brief and infrequent. Experience of repeated immobilisation and subcutaneous injection did not reverse the positive effects of tunnel handling. Our findings demonstrate that replacing tail with tunnel handling during routine cage cleaning and procedures provides a major refinement with little if any cost for familiarisation.
Optimising reliability of mouse performance in behavioural testing: the major role of non-aversive handling
Handling laboratory animals during test procedures is an important source of stress that may impair reliability of test responses. Picking up mice by the tail is aversive, stimulating stress and anxiety. Responses among anxious animals can be confounded further by neophobia towards novel test environments and avoidance of test stimuli in open areas. However, handling stress can be reduced substantially by using a handling tunnel, or cupping mice without restraint on the open hand. Here we establish whether non-aversive handling, brief prior familiarisation with the test arena and alternative stimulus placement could significantly improve performance of mice in behavioural tests. We use a simple habituation-dishabituation paradigm in which animals must discriminate between two urine stimuli in successive trials, a task that mice can easily perform. Tail handled mice showed little willingness to explore and investigate test stimuli, leading to poor test performance that was only slightly improved by prior familiarisation. By contrast, those handled by tunnel explored readily and showed robust responses to test stimuli regardless of prior familiarisation or stimulus location, though responses were more variable for cup handling. Our study shows that non-aversive tunnel handling can substantially improve mouse performance in behavioural tests compared to traditional tail handling.
Taming anxiety in laboratory mice
Mice handled by their tails show high levels of anxiety and stress compared to mice handled in cupped hands or in a transparent tunnel. Routine laboratory animal handling has profound effects on their anxiety and stress responses, but little is known about the impact of handling method. We found that picking up mice by the tail induced aversion and high anxiety, whereas use of tunnels or open hand led to voluntary approach, low anxiety and acceptance of physical restraint. Using the latter methods, one can minimize a widespread source of anxiety in laboratory mice.
Communicating through scents: an interview with Jane Hurst
Jane Hurst is a William Prescott Professor of Animal Science at the University of Liverpool, UK, studying scent communication in mammals and its role in behaviours. In this interview, Jane discusses how scents encode complex information in rodents, driving behaviours such as kinship interactions and choosing a mate, how understanding natural behaviours of animals can inform experimental designs, and what is the connection between Jane Austen and pheromones.
Female Chemical Signalling Underlying Reproduction in Mammals
Chemical communication plays many key roles in mammalian reproduction, although attention has focused particularly on male scent signalling. Here, we review evidence that female chemical signals also play important roles in sexual attraction, in mediating reproductive competition and cooperation between females, and in maternal care, all central to female reproductive success. Female odours function not only to advertise sexual receptivity and location, they can also have important physiological priming effects on male development and sperm production. However, the extent to which female scents are used to assess the quality of females as potential mates has received little attention. Female investment in scent signalling is strongly influenced by the social structure and breeding system of the species. Although investment is typically male-biased, high competition between females can lead to a reversed pattern of female- biased investment. As among males, scent marking and counter-marking are often used to advertise territory defence and high social rank. Female odours have been implicated in the reproductive suppression of young or subordinate females across a range of social systems, with females of lower competitive ability potentially benefiting by delaying reproduction until conditions are more favourable. Further, the ability to recognise individuals, group members and kin through scent underpins group cohesion and cooperation in many social species, as well as playing an important role in mother-offspring recognition. However, despite the diversity of female scent signals, chemical communication in female mammals remains relatively understudied and poorly understood. We highlight several key areas of future research that are worthy of further investigation.
Testing the potential of 50 kHz rat calls as a species-specific rat attractant
The control of mammalian pests relies heavily on the use of pesticides that are often avoided and are not species-specific. These problems are particularly acute for pesticides used to control rats (Rattus spp.). The efficacy and targeting of control could be improved by attracting animals to control measures using species-specific cues. One cue that has the potential to attract rats is the 50 kHz calls they emit in positive social situations. Here we test the potential of these rat calls as a species-specific attractant by examining the response of laboratory rats (Rattus norvegicus; n = 48) and non-target bank voles (Myodes glareolus; n = 16) to 50 kHz calls from either sex in a compartmentalised laboratory arena. Sounds of rat movement and white noise acted as control treatments, with each sound tested against a silent control in the opposite side of the arena. When sound cues were played above an empty bait box, rats were attracted to spend time close to 50 kHz rat calls, climbing on top of boxes, regardless of the sex of subject or caller. When either 50 kHz rat calls or rat movement sounds were played inside an empty bait box, rats of both sexes spent 3-4 fold more time inside boxes and visited more frequently. Rats were not attracted by intermittent white noise. Bank voles were neither attracted to, nor avoided, 50 kHz rat calls played inside empty bait boxes. Our findings show that 50 kHz rat calls are an effective attractant for rats of both sexes under laboratory conditions, while not attracting non-target bank voles. These calls are strong candidates for providing a species-specific lure that may be attractive even in the absence of food bait, but further trials will be needed to assess their efficacy under field conditions.
Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis
BackgroundWe sought to investigate the diagnostic yield and mutation spectrum in previously reported genes for early-onset epilepsy and disorders of severe developmental delay.MethodsIn 400 patients with these disorders with no known underlying aetiology and no major structural brain anomaly, we analysed 46 genes using a combination of targeted sequencing on an Illumina MiSeq platform and targeted, exon-level microarray copy number analysis.ResultsWe identified causative mutations in 71/400 patients (18%). The diagnostic rate was highest among those with seizure onset within the first two months of life (39%), although overall it was similar in those with and without seizures. The most frequently mutated gene was SCN2A (11 patients, 3%). Other recurrently mutated genes included CDKL5, KCNQ2, SCN8A (six patients each), FOXG1, MECP2, SCN1A, STXBP1 (five patients each), KCNT1, PCDH19, TCF4 (three patients each) and ATP1A3, PRRT2 and SLC9A6 (two patients each). Mutations in EHMT1, GABRB3, LGI1, MBD5, PIGA, UBE3A and ZEB2 were each found in single patients. We found mutations in a number of genes in patients where either the electroclinical features or dysmorphic phenotypes were atypical for the identified gene. In only 11 cases (15%) had the clinician sufficient certainty to specify the mutated gene as the likely cause before testing.ConclusionsOur data demonstrate the considerable utility of a gene panel approach in the diagnosis of patients with early-onset epilepsy and severe developmental delay disorders., They provide further insights into the phenotypic spectrum and genotype–phenotype correlations for a number of the causative genes and emphasise the value of exon-level copy number testing in their analysis.
Rapid identification of mosquito species and age by mass spectrometric analysis
Background A rapid, accurate method to identify and to age-grade mosquito populations would be a major advance in predicting the risk of pathogen transmission and evaluating the public health impact of vector control interventions. Whilst other spectrometric or transcriptomic methods show promise, current approaches rely on challenging morphological techniques or simple binary classifications that cannot identify the subset of the population old enough to be infectious. In this study, the ability of rapid evaporative ionisation mass spectrometry (REIMS) to identify the species and age of mosquitoes reared in the laboratory and derived from the wild was investigated. Results The accuracy of REIMS in identifying morphologically identical species of the Anopheles gambiae complex exceeded 97% using principal component/linear discriminant analysis (PC-LDA) and 84% based on random forest analysis. Age separation into 3 different age categories (1 day, 5–6 days, 14–15 days) was achieved with 99% (PC-LDA) and 91% (random forest) accuracy. When tested on wild mosquitoes from the UK, REIMS data could determine the species and age of the specimens with accuracies of 91 and 90% respectively. Conclusions The accuracy of REIMS to resolve the species and age of Anopheles mosquitoes is comparable to that achieved by infrared spectroscopy approaches. The processing time and ease of use represent significant advantages over current, dissection-based methods. Importantly, the accuracy was maintained when using wild mosquitoes reared under differing environmental conditions, and when mosquitoes were stored frozen or desiccated. This high throughput approach thus has potential to conduct rapid, real-time monitoring of vector populations, providing entomological evidence of the impact of alternative interventions.