Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Hurtt, G.C"
Sort by:
Beyond potential vegetation: combining lidar data and a height-structured model for carbon studies
Carbon estimates from terrestrial ecosystem models are limited by large uncertainties in the current state of the land surface. Natural and anthropogenic disturbances have important and lasting influences on ecosystem structure and fluxes that can be difficult to detect or assess with conventional methods. In this study, we combined two recent advances in remote sensing and ecosystem modeling to improve model carbon stock and flux estimates at a tropical forest study site at La Selva, Costa Rica (10°25' N, 84°00' W). Airborne lidar remote sensing was used to measure spatial heterogeneity in the vertical structure of vegetation. The ecosystem demography model (ED) was used to estimate the consequences of this heterogeneity for regional estimates of carbon stocks and fluxes. Lidar data provided substantial constraints on model estimates of both carbon stocks and net carbon fluxes. Lidar-initialized ED estimates of aboveground biomass were within 1.2% of regression-based approaches, and corresponding model estimates of net carbon fluxes differed substantially from bracketing alternatives. The results of this study provide a promising illustration of the power of combining lidar data on vegetation height with a height-structured ecosystem model. Extending these analyses to larger scales will require the development of regional and global lidar data sets, and the continued development and application of height structured ecosystem models.