Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
69 result(s) for "Hutter, Jana"
Sort by:
Complex diffusion-weighted image estimation via matrix recovery under general noise models
We propose a patch-based singular value shrinkage method for diffusion magnetic resonance image estimation targeted at low signal to noise ratio and accelerated acquisitions. It operates on the complex data resulting from a sensitivity encoding reconstruction, where asymptotically optimal signal recovery guarantees can be attained by modeling the noise propagation in the reconstruction and subsequently simulating or calculating the limit singular value spectrum. Simple strategies are presented to deal with phase inconsistencies and optimize patch construction. The pertinence of our contributions is quantitatively validated on synthetic data, an in vivo adult example, and challenging neonatal and fetal cohorts. Our methodology is compared with related approaches, which generally operate on magnitude-only data and use data-based noise level estimation and singular value truncation. Visual examples are provided to illustrate effectiveness in generating denoised and debiased diffusion estimates with well preserved spatial and diffusion detail. •Denoised and debiased diffusion-weighted imaging.•Applied in adult, neonatal and fetal cohorts.•Optimal singular value shrinkage for general noise models.•Asymptotic risks to predict SNR after denoising.
The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction
The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity.
Scattered slice SHARD reconstruction for motion correction in multi-shell diffusion MRI
•Subject motion in dMRI leads to a set of scattered slices with unique contrast.•We introduce a slice-to-volume reconstruction framework for multi-shell HARDI data•Based on a data-driven representation as spherical harmonics and radial decomposition (SHARD).•The method is evaluated in test-retest scans and in the neonatal dHCP cohort.•Results show robust reconstruction in severely motion-corrupted scans. Diffusion MRI offers a unique probe into neural microstructure and connectivity in the developing brain. However, analysis of neonatal brain imaging data is complicated by inevitable subject motion, leading to a series of scattered slices that need to be aligned within and across diffusion-weighted contrasts. Here, we develop a reconstruction method for scattered slice multi-shell high angular resolution diffusion imaging (HARDI) data, jointly estimating an uncorrupted data representation and motion parameters at the slice or multiband excitation level. The reconstruction relies on data-driven representation of multi-shell HARDI data using a bespoke spherical harmonics and radial decomposition (SHARD), which avoids imposing model assumptions, thus facilitating to compare various microstructure imaging methods in the reconstructed output. Furthermore, the proposed framework integrates slice-level outlier rejection, distortion correction, and slice profile correction. We evaluate the method in the neonatal cohort of the developing Human Connectome Project (650 scans). Validation experiments demonstrate accurate slice-level motion correction across the age range and across the range of motion in the population. Results in the neonatal data show successful reconstruction even in severely motion-corrupted subjects. In addition, we illustrate how local tissue modelling can extract advanced microstructure features such as orientation distribution functions from the motion-corrected reconstructions.
Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project
The developing Human Connectome Project is set to create and make available to the scientific community a 4-dimensional map of functional and structural cerebral connectivity from 20 to 44 weeks post-menstrual age, to allow exploration of the genetic and environmental influences on brain development, and the relation between connectivity and neurocognitive function. A large set of multi-modal MRI data from fetuses and newborn infants is currently being acquired, along with genetic, clinical and developmental information. In this overview, we describe the neonatal diffusion MRI (dMRI) image processing pipeline and the structural connectivity aspect of the project. Neonatal dMRI data poses specific challenges, and standard analysis techniques used for adult data are not directly applicable. We have developed a processing pipeline that deals directly with neonatal-specific issues, such as severe motion and motion-related artefacts, small brain sizes, high brain water content and reduced anisotropy. This pipeline allows automated analysis of in-vivo dMRI data, probes tissue microstructure, reconstructs a number of major white matter tracts, and includes an automated quality control framework that identifies processing issues or inconsistencies. We here describe the pipeline and present an exemplar analysis of data from 140 infants imaged at 38–44 weeks post-menstrual age. •A comprehensive and automated pipeline to consistently analyse neonatal dMRI data.•Optimised motion and distortions correction to address newborn specific challenges.•The automated QC framework allows to detect issues and to quantify data quality.•Automated white matter segmentation allows to extract tract-specific masks.•Preliminary data analysis of 140 infants imaged at 38–44 weeks post-menstrual age.
Preterm birth alters the development of cortical microstructure and morphology at term-equivalent age
The dynamic nature and complexity of the cellular events that take place during the last trimester of pregnancy make the developing cortex particularly vulnerable to perturbations. Abrupt interruption to normal gestation can lead to significant deviations to many of these processes, resulting in atypical trajectory of cortical maturation in preterm birth survivors. We sought to first map typical cortical micro- and macrostructure development using invivo MRI in a large sample of healthy term-born infants scanned after birth (n = 259). Then we offer a comprehensive characterization of the cortical consequences of preterm birth in 76 preterm infants scanned at term-equivalent age (37–44 weeks postmenstrual age). We describe the group-average atypicality, the heterogeneity across individual preterm infants, and relate individual deviations from normative development to age at birth and neurodevelopment at 18 months. In the term-born neonatal brain, we observed heterogeneous and regionally specific associations between age at scan and measures of cortical morphology and microstructure, including rapid surface expansion, greater cortical thickness, lower cortical anisotropy and higher neurite orientation dispersion. By term-equivalent age, preterm infants had on average increased cortical tissue water content and reduced neurite density index in the posterior parts of the cortex, and greater cortical thickness anteriorly compared to term-born infants. While individual preterm infants were more likely to show extreme deviations (over 3.1 standard deviations) from normative cortical maturation compared to term-born infants, these extreme deviations were highly variable and showed very little spatial overlap between individuals. Measures of regional cortical development were associated with age at birth, but not with neurodevelopment at 18 months. We showed that preterm birth alters cortical micro- and macrostructural maturation near the time of full-term birth. Deviations from normative development were highly variable between individual preterm infants.
Construction of a neonatal cortical surface atlas using Multimodal Surface Matching in the Developing Human Connectome Project
We propose a method for constructing a spatio-temporal cortical surface atlas of neonatal brains aged between 36 and 44 weeks of post-menstrual age (PMA) at the time of scan. The data were acquired as part of the Developing Human Connectome Project (dHCP), and the constructed surface atlases are publicly available. The method is based on a spherical registration approach: Multimodal Surface Matching (MSM), using cortical folding for driving the alignment. Templates have been generated for the anatomical cortical surface and for the cortical feature maps: sulcal depth, curvature, thickness, T1w/T2w myelin maps and cortical regions. To achieve this, cortical surfaces from 270 infants were first projected onto the sphere. Templates were then generated in two stages: first, a reference space was initialised via affine alignment to a group average adult template. Following this, templates were iteratively refined through repeated alignment of individuals to the template space until the variability of the average feature sets converged. Finally, bias towards the adult reference was removed by applying the inverse of the average affine transformations on the template and de-drifting the template. We used temporal adaptive kernel regression to produce age-dependant atlases for 9 weeks (36–44 weeks PMA). The generated templates capture expected patterns of cortical development including an increase in gyrification as well as an increase in thickness and T1w/T2w myelination with increasing age. •Creation of spatio-temporal cortical surface atlas of the developing brain (36-44 weeks PMA).•Atlas captures patterns of cortical development in the neonatal dHCP population.•Includes surface features: sulcal depth, curvature, thickness, T1w/T2w myelin, cortical labels.
Cortical morphology at birth reflects spatiotemporal patterns of gene expression in the fetal human brain
Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. We compared cortical morphology captured by high-resolution, multimodal magnetic resonance imaging (MRI) in n = 292 healthy newborn infants (mean age at birth = 39.9 weeks) with regional patterns of gene expression in the fetal cortex across gestation ( n = 156 samples from 16 brains, aged 12 to 37 postconceptional weeks [pcw]). We tested the hypothesis that noninvasive measures of cortical structure at birth mirror areal differences in cortical gene expression across gestation, and in a cohort of n = 64 preterm infants (mean age at birth = 32.0 weeks), we tested whether cortical alterations observed after preterm birth were associated with altered gene expression in specific developmental cell populations. Neonatal cortical structure was aligned to differential patterns of cell-specific gene expression in the fetal cortex. Principal component analysis (PCA) of 6 measures of cortical morphology and microstructure showed that cortical regions were ordered along a principal axis, with primary cortex clearly separated from heteromodal cortex. This axis was correlated with estimated tissue maturity, indexed by differential expression of genes expressed by progenitor cells and neurons, and engaged in stem cell differentiation, neuron migration, and forebrain development. Preterm birth was associated with altered regional MRI metrics and patterns of differential gene expression in glial cell populations. The spatial patterning of gene expression in the developing cortex was thus mirrored by regional variation in cortical morphology and microstructure at term, and this was disrupted by preterm birth. This work provides a framework to link molecular mechanisms to noninvasive measures of cortical development in early life and highlights novel pathways to injury in neonatal populations at increased risk of neurodevelopmental disorder.
Automated cervix biometry, volumetry and normative models for 3D motion-corrected T2-weighted 0.55-3T fetal MRI during 2nd and 3rd trimesters
Fetal MRI provides superior tissue contrast and true 3D spatial information however there is only a limited number of MRI studies investigating cervix during pregnancy 1 , 2 – 3 . Furthermore, there are no clearly formalised protocols or automated methods for MRI cervical measurements. This work introduces the first deep learning pipeline for automated multi-layer segmentation and biometry for 3D T2w reconstructed images of the pregnant cervix. Evaluation on 20 datasets from 0.55T and 3T acquisitions showed good performance in comparison to manual measurements. This solution could potentially minimise the need for manual editing, significantly reduce analysis time and address inter- and intra-observer bias. Next, we used the pipeline to process 270 normal term cases from 16 to 40 weeks gestational age (GA) range. The inlet diameter and length showed the strongest correlation with GA which is in agreement with the gradual remodeling and softening of the cervix prior to birth. We also generated 3D population-averaged MRI atlases of the cervix that are publicly available online.
Placental T2 as a measure of placental function across field strength from 0.55T to 3T
Placental MRI is increasingly implemented in clinical obstetrics and research. Functional imaging, especially T2*, has been shown to vary across gestation and in pathology. Translation into the clinical arena has been slow because of time taken to mask the region of interest and owing to differences in T2* results depending on field strength. This paper contributes methodology to remove these barriers by utilising data from 0.55, 1.5 and 3T MRI to provide a fully automated segmentation tool; determining field strength dependency of placental assessment techniques; and deriving normal ranges for T2* by gestational age but independent of field strength. T2* datasets were acquired across field strengths. Automatic quantification including fully automatic masking was achieved and tested in 270 datasets across fields. Normal curves for quantitative placental mean T2*, volume and other derived measurements were obtained in 273 fetal MRI scans and z-scores calculated. The fully automatic segmentation achieved excellent quantification results (Dice scores of 0.807 at 3T, 0.796 at 1.5T and 0.815 at 0.55T.). Similar changes were seen between placental T2* and gestational age across all three field strengths ( p  < 0.05). Z-scores were generated. This study provides confidence in the translatability of T2* trends across field strengths in fetal imaging.
Advanced magnetic resonance imaging detects altered placental development in pregnancies affected by congenital heart disease
Congenital heart disease (CHD) is the most common congenital malformation and is associated with adverse neurodevelopmental outcomes. The placenta is crucial for healthy fetal development and placental development is altered in pregnancy when the fetus has CHD. This study utilized advanced combined diffusion-relaxation MRI and a data-driven analysis technique to test the hypothesis that placental microstructure and perfusion are altered in CHD-affected pregnancies. 48 participants (36 controls, 12 CHD) underwent 67 MRI scans (50 control, 17 CHD). Significant differences in the weighting of two independent placental and uterine-wall tissue components were identified between the CHD and control groups (both p FDR  < 0.001), with changes most evident after 30 weeks gestation. A significant trend over gestation in weighting for a third independent tissue component was also observed in the CHD cohort (R = 0.50, p FDR  = 0.04), but not in controls. These findings add to existing evidence that placental development is altered in CHD. The results may reflect alterations in placental perfusion or the changes in fetal-placental flow, villous structure and maturation that occur in CHD. Further research is needed to validate and better understand these findings and to understand the relationship between placental development, CHD, and its neurodevelopmental implications.