Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
62
result(s) for
"Huys, Daniel"
Sort by:
Image-based analysis and long-term clinical outcomes of deep brain stimulation for Tourette syndrome: a multisite study
by
Fletcher, P Thomas
,
Okun, Michael S
,
Huys, Daniel
in
Attention deficit hyperactivity disorder
,
Behavior modification
,
Clinical outcomes
2019
BackgroundDeep brain stimulation (DBS) can be an effective therapy for tics and comorbidities in select cases of severe, treatment-refractory Tourette syndrome (TS). Clinical responses remain variable across patients, which may be attributed to differences in the location of the neuroanatomical regions being stimulated. We evaluated active contact locations and regions of stimulation across a large cohort of patients with TS in an effort to guide future targeting.MethodsWe collected retrospective clinical data and imaging from 13 international sites on 123 patients. We assessed the effects of DBS over time in 110 patients who were implanted in the centromedial (CM) thalamus (n=51), globus pallidus internus (GPi) (n=47), nucleus accumbens/anterior limb of the internal capsule (n=4) or a combination of targets (n=8). Contact locations (n=70 patients) and volumes of tissue activated (n=63 patients) were coregistered to create probabilistic stimulation atlases.ResultsTics and obsessive–compulsive behaviour (OCB) significantly improved over time (p<0.01), and there were no significant differences across brain targets (p>0.05). The median time was 13 months to reach a 40% improvement in tics, and there were no significant differences across targets (p=0.84), presence of OCB (p=0.09) or age at implantation (p=0.08). Active contacts were generally clustered near the target nuclei, with some variability that may reflect differences in targeting protocols, lead models and contact configurations. There were regions within and surrounding GPi and CM thalamus that improved tics for some patients but were ineffective for others. Regions within, superior or medial to GPi were associated with a greater improvement in OCB than regions inferior to GPi.ConclusionThe results collectively indicate that DBS may improve tics and OCB, the effects may develop over several months, and stimulation locations relative to structural anatomy alone may not predict response. This study was the first to visualise and evaluate the regions of stimulation across a large cohort of patients with TS to generate new hypotheses about potential targets for improving tics and comorbidities.
Journal Article
European clinical guidelines for Tourette syndrome and other tic disorders—version 2.0. Part IV: deep brain stimulation
by
Porta, Mauro
,
Huys, Daniel
,
Ganos Christos
in
Brain
,
Case studies
,
Child & adolescent psychiatry
2022
In 2011 the European Society for the Study of Tourette Syndrome (ESSTS) published its first European clinical guidelines for the treatment of Tourette Syndrome (TS) with part IV on deep brain stimulation (DBS). Here, we present a revised version of these guidelines with updated recommendations based on the current literature covering the last decade as well as a survey among ESSTS experts. Currently, data from the International Tourette DBS Registry and Database, two meta-analyses, and eight randomized controlled trials (RCTs) are available. Interpretation of outcomes is limited by small sample sizes and short follow-up periods. Compared to open uncontrolled case studies, RCTs report less favorable outcomes with conflicting results. This could be related to several different aspects including methodological issues, but also substantial placebo effects. These guidelines, therefore, not only present currently available data from open and controlled studies, but also include expert knowledge. Although the overall database has increased in size since 2011, definite conclusions regarding the efficacy and tolerability of DBS in TS are still open to debate. Therefore, we continue to consider DBS for TS as an experimental treatment that should be used only in carefully selected, severely affected and otherwise treatment-resistant patients.
Journal Article
A brief demonstration of frontostriatal connectivity in OCD patients with intracranial electrodes
2020
Closed-loop neuromodulation is presumed to be the logical evolution for improving the effectiveness of deep brain stimulation (DBS) treatment protocols (Widge et al., 2018). Identifying symptom-relevant biomarkers that provide meaningful feedback to stimulator devices is an important initial step in this direction. This report demonstrates a technique for assaying neural circuitry hypothesized to contribute to OCD and DBS treatment outcomes. We computed phase-lag connectivity between LFPs and EEGs in thirteen treatment-refractory OCD patients. Simultaneous recordings from scalp EEG and externalized DBS electrodes in the ventral capsule/ventral striatum (VC/VS) were collected at rest during the perioperative treatment stage. Connectivity strength between midfrontal EEG sensors and VC/VS electrodes correlated with baseline OCD symptoms and 12-month posttreatment OCD symptoms. Results are qualified by a relatively small sample size, and limitations regarding the conclusiveness of VS and mPFC as neural generators given some concerns about volume conduction. Nonetheless, findings are consistent with treatment-relevant tractography findings and theories that link frontostriatal hyperconnectivity to the etiopathogenesis of OCD. Findings support the continued investigation of connectivity-based assays for aiding in determination of optimal stimulation location, and are an initial step towards the identification of biomarkers that can guide closed-loop neuromodulation systems.
•Phase-lag connectivity may inform closed-loop neuromodulation.•Change in frontostriatal (hyper)connectivity may be a therapeutic mechanism of DBS.•Phase-lag connectivity between frontal and striatal regions predicts OCD severity.•Network-level metrics may be useful for guiding on-demand neuromodulation.•Findings support frontostriatal theories of OCD etiopathogenesis.
Journal Article
Temporal discounting in adolescents and adults with Tourette syndrome
by
Wagner, Ben Jonathan
,
Schüller, Thomas
,
Kerner auch Koerner, Julia
in
Adolescent
,
Adolescents
,
Adult
2021
Tourette syndrome is a neurodevelopmental disorder associated with hyperactivity in dopaminergic networks. Dopaminergic hyperactivity in the basal ganglia has previously been linked to increased sensitivity to positive reinforcement and increases in choice impulsivity. In this study, we examine whether this extends to changes in temporal discounting, where impulsivity is operationalized as an increased preference for smaller-but-sooner over larger-but-later rewards. We assessed intertemporal choice in two studies including nineteen adolescents (age: mean[sd] = 14.21[±2.37], 13 male subjects) and twenty-five adult patients (age: mean[sd] = 29.88 [±9.03]; 19 male subjects) with Tourette syndrome and healthy age- and education matched controls. Computational modeling using exponential and hyperbolic discounting models via hierarchical Bayesian parameter estimation revealed reduced temporal discounting in adolescent patients, and no evidence for differences in adult patients. Results are discussed with respect to neural models of temporal discounting, dopaminergic alterations in Tourette syndrome and the developmental trajectory of temporal discounting. Specifically, adolescents might show attenuated discounting due to improved inhibitory functions that also affect choice impulsivity and/or the developmental trajectory of executive control functions. Future studies would benefit from a longitudinal approach to further elucidate the developmental trajectory of these effects.
Journal Article
Error-Related Activity in Striatal Local Field Potentials and Medial Frontal Cortex: Evidence From Patients With Severe Opioid Abuse Disorder
by
Sildatke, Elena
,
Schüller, Thomas
,
Gründler, Theo O. J.
in
Abuse
,
Adaptation
,
Clinical trials
2021
For successful goal-directed behavior, a performance monitoring system is essential. It detects behavioral errors and initiates behavioral adaptations to improve performance. Two electrophysiological potentials are known to follow errors in reaction time tasks: the error-related negativity (ERN), which is linked to error processing, and the error positivity (Pe), which is associated with subjective error awareness. Furthermore, the correct-related negativity (CRN) is linked to uncertainty about the response outcome. Here we attempted to identify the involvement of the nucleus accumbens (NAc) in the aforementioned performance monitoring processes. To this end, we simultaneously recorded cortical activity (EEG) and local field potentials (LFP) during a flanker task performed by four patients with severe opioid abuse disorder who underwent electrode implantation in the NAc for deep brain stimulation. We observed significant accuracy-related modulations in the LFPs at the time of the ERN/CRN in two patients and at the time of Pe in three patients. These modulations correlated with the ERN in 2/8, with CRN in 5/8 and with Pe in 6/8, recorded channels, respectively. Our results demonstrate the functional interrelation of striatal and cortical processes in performance monitoring specifically related to error processing and subjective error awareness.
Journal Article
Modulation of Fibers to Motor Cortex during Thalamic DBS in Tourette Patients Correlates with Tic Reduction
by
Schlamann, Marc
,
Huys, Daniel
,
Andrade, Pablo
in
Clinical outcomes
,
connectivity, tractography
,
Cortex (motor)
2020
Probabilistic tractography in Tourette syndrome (TS) patients have shown an alteration in the connectivity of the primary motor cortex and supplementary motor area with the striatum and thalamus, suggesting an abnormal connectivity of the cortico-striatum-thalamocortical-pathways in TS. Deep brain stimulation (DBS) of the centromedian nucleus–nucleus ventrooralis internus (CM-Voi complex) in the thalamus is an effective treatment for refractory TS patients. We investigated the connectivity of activated fibers from CM-Voi to the motor cortex and its correlation between these projections and their clinical outcome. Seven patients with TS underwent CM-Voi-DBS surgery and were clinically evaluated preoperatively and six months postoperatively. We performed diffusion tensor imaging to display the activated fibers projecting from the CM-Voi to the different motor cortex regions of interest. These analyses showed that the extent of tic reduction during DBS is associated with the degree of stimulation-dependent connectivity between CM-Voi and the motor cortex, and in particular, an increased density of projections to the presupplementary motor area (preSMA). Non-responder patients displayed the largest amount of active fibers projecting into cortical areas other than motor cortex compared to responder patients. These findings support the notion that an abnormal connectivity of thalamocortical pathways underlies TS, and that modulation of these circuits through DBS could restore the function and reduce symptoms.
Journal Article
Connectivity Patterns of Deep Brain Stimulation Targets in Patients with Gilles de la Tourette Syndrome
by
Schüller, Thomas
,
Hoevels, Mauritius
,
Huys, Daniel
in
Clinical outcomes
,
Deep brain stimulation
,
Gilles de la Tourette syndrome
2021
Since 1999, several targets for deep brain stimulation (DBS) in Gilles de la Tourette syndrome (GTS) have emerged showing similar success rates. Studies using different tractography techniques have identified connectivity profiles associated with a better outcome for individual targets. However, GTS patients might need individualized therapy. The objective of this study is to analyze the connectivity profile of different DBS targets for GTS. We identified standard target coordinates for the centromedian nucleus/nucleus ventro-oralis internus (CM/Voi), the CM/parafascicular (CM-Pf) complex, the anteromedial globus pallidus internus (amGPi), the posteroventral GPi (pvGPi), the ventral anterior/ventrolateral thalamus (VA/VL), and the nucleus accumbens/anterior limb of the internal capsule (Nacc/ALIC). Probabilistic tractography was performed from the targets to different limbic and motor areas based on patient-specific imaging and a normative connectome (HCP). Our analysis showed significant differences between the connectivity profiles of standard DBS targets (p < 0.05). Among all targets, the pvGPi showed the strongest connection to the sensorimotor cortex, while the amGPi showed the strongest connection to the prefrontal cortex in patient-specific imaging. Differences were observed between the connectivity profiles when using probabilistic tractography based on patient data and HCP. Our findings showed that the connectivity profiles of different DBS targets to major motor and limbic areas differ significantly. In the future, these differences may be considered when planning DBS for GTS patients employing an individualized approach. There were compelling differences in connectivity profiles when using different tractography techniques.
Journal Article
Weight Change after Striatal/Capsule Deep Brain Stimulation Relates to Connectivity to the Bed Nucleus of the Stria Terminalis and Hypothalamus
2019
Weight changes are insufficiently understood adverse events of deep brain stimulation. In this context, exploring neural networks of weight control may inform novel treatment strategies for weight-related disorders. In this study, we investigated weight changes after deep brain stimulation of the ventral striatum/ventral capsule and to what extent changes are associated with connectivity to feeding-related networks. We retrospectively analyzed 25 patients undergoing deep brain stimulation for obsessive-compulsive disorder or substance dependency. Weight changes were assessed preoperatively and six to twelve months after surgery and then matched with individual stimulation sites and stimulation-dependent functional connectivity to a priori defined regions of interest that are involved in food intake. We observed a significant weight gain after six to twelve months of continuous stimulation. Weight increases were associated with medial/apical localization of stimulation sites and with connectivity to hypothalamic areas and the bed nucleus. Thus, deep brain stimulation of the ventral striatum/ventral capsule influences weight depending on localization and connectivity of stimulation sites. Bearing in mind the significance of weight-related disorders, we advocate further prospective studies investigating the neuroanatomical and neuropsychological underpinnings of food intake and their neuromodulatory therapeutic potential.
Journal Article
Open-label trial of anterior limb of internal capsule–nucleus accumbens deep brain stimulation for obsessive-compulsive disorder: insights gained
by
Timmermann, Lars
,
Huys, Daniel
,
Baldermann, Juan Carlos
in
Adult
,
Behavior modification
,
Clinical trials
2019
BackgroundFor more than 15 years, deep brain stimulation (DBS) has served as a last-resort treatment for severe treatment-resistant obsessive-compulsive disorder (OCD).MethodsFrom 2010 to 2016, 20 patients with OCD (10 men/10 women) were included in a single-centre trial with a naturalistic open-label design over 1 year to evaluate the effects of DBS in the anterior limb of the internal capsule and nucleus accumbens region (ALIC-NAcc) on OCD symptoms, executive functions, and personality traits.ResultsALIC-NAcc-DBS significantly decreased OCD symptoms (mean Yale-Brown Obsessive Compulsive Scale reduction 33%, 40% full responders) and improves global functioning without loss of efficacy over 1 year. No significant changes were found in depressive or anxiety symptoms. Our study did not show any effect of ALIC-NAcc-DBS on personality traits or executive functions, and no potential outcome predictors were identified in a post hoc analysis. Other than several individual minor adverse events, ALIC-NAcc-DBS has been shown to be safe, but 35% of patients reported a sudden increase in anxiety and anhedonia after acute cessation of stimulation.ConclusionsWe conclude that ALIC-NAcc-DBS is a well-tolerated and promising last-resort treatment option for OCD. The cause of variability in the outcome remains unclear, and the aspect of reversibility must be examined critically. The present data from one of the largest samples of patients with OCD treated with DBS thus far support the results of previous studies with smaller samples.
Journal Article
Predictors of short-term impulsive and compulsive behaviour after subthalamic stimulation in Parkinson disease
2021
BackgroundThe effects of subthalamic stimulation (subthalamic nucleus-deep brain stimulation, STN-DBS) on impulsive and compulsive behaviours (ICB) in Parkinson’s disease (PD) are understudied.ObjectiveTo investigate clinical predictors of STN-DBS effects on ICB.MethodsIn this prospective, open-label, multicentre study in patients with PD undergoing bilateral STN-DBS, we assessed patients preoperatively and at 6-month follow-up postoperatively. Clinical scales included the Questionnaire for Impulsive-Compulsive Disorders in PD-Rating Scale (QUIP-RS), PD Questionnaire-8, Non-Motor Symptom Scale (NMSS), Unified PD Rating Scale in addition to levodopa-equivalent daily dose total (LEDD-total) and dopamine agonists (LEDD-DA). Changes at follow-up were analysed with Wilcoxon signed-rank test and corrected for multiple comparisons (Bonferroni method). We explored predictors of QUIP-RS changes using correlations and linear regressions. Finally, we dichotomised patients into ‘QUIP-RS improvement or worsening’ and analysed between-group differences.ResultsWe included 55 patients aged 61.7 years±8.4 with 9.8 years±4.6 PD duration. QUIP-RS cut-offs and psychiatric assessments identified patients with preoperative ICB. In patients with ICB, QUIP-RS improved significantly. However, we observed considerable interindividual variability of clinically relevant QUIP-RS outcomes as 27.3% experienced worsening and 29.1% an improvement. In post hoc analyses, higher baseline QUIP-RS and lower baseline LEDD-DA were associated with greater QUIP-RS improvements. Additionally, the ‘QUIP-RS worsening’ group had more severe baseline impairment in the NMSS attention/memory domain.ConclusionsOur results show favourable ICB outcomes in patients with higher preoperative ICB severity and lower preoperative DA doses, and worse outcomes in patients with more severe baseline attention/memory deficits. These findings emphasise the need for comprehensive non-motor and motor symptoms assessments in patients undergoing STN-DBS.Trial registration numberDRKS00006735.
Journal Article