Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Hynson, Robert M G"
Sort by:
Domain-swap polymerization drives the self-assembly of the bacterial flagellar motor
A combination of evolutionary covariance, biochemistry and SAXS analyses reveal that Escherichia coli FliG exists as a monomer in solution but forms domain-swapped polymers in assembled flagellar motors, thus leading to a thermodynamic model for self-assembly. Large protein complexes assemble spontaneously, yet their subunits do not prematurely form unwanted aggregates. This paradox is epitomized in the bacterial flagellar motor, a sophisticated rotary motor and sensory switch consisting of hundreds of subunits. Here we demonstrate that Escherichia coli FliG, one of the earliest-assembling flagellar motor proteins, forms ordered ring structures via domain-swap polymerization, which in other proteins has been associated with uncontrolled and deleterious protein aggregation. Solution structural data, in combination with in vivo biochemical cross-linking experiments and evolutionary covariance analysis, revealed that FliG exists predominantly as a monomer in solution but only as domain-swapped polymers in assembled flagellar motors. We propose a general structural and thermodynamic model for self-assembly, in which a structural template controls assembly and shapes polymer formation into rings.
1H, 13C and 15N backbone and side chain resonance assignments of the N-terminal domain of the histidine kinase inhibitor KipI from Bacillus subtilis
KipI is a sporulation inhibitor in Bacillus subtilis which acts by binding to the dimerisation and histidine phosphotransfer (DHp) domain of KinA, the principle input kinase in the phosphorelay responsible for sporulation. The 15 N, 13 C and 1 H chemical shift assignments of the N-terminal domain of KipI were determined using multidimensional, multinuclear NMR experiments. The N-terminal domain has two conformers and resonance assignments have been made for both conformers.
H, ¹³C and ¹⁵N backbone and side chain resonance assignments of the N-terminal domain of the histidine kinase inhibitor KipI from Bacillus subtilis
KipI is a sporulation inhibitor in Bacillus subtilis which acts by binding to the dimerisation and histidine phosphotransfer (DHp) domain of KinA, the principle input kinase in the phosphorelay responsible for sporulation. The ¹⁵N, ¹³C and ¹H chemical shift assignments of the N-terminal domain of KipI were determined using multidimensional, multinuclear NMR experiments. The N-terminal domain has two conformers and resonance assignments have been made for both conformers.