Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "IU Mei-Fway"
Sort by:
Low-dose parathyroid hormone and estrogen reverse alkaline phosphatase activity suppressed by dexamethasone in mouse osteoblastic cells
Glucocorticoid (GC)-induced osteoporosis (GIO) is frequently seen in patients with excessive GC. Numerous questions remain to be clarified about the pathogenesis and treatment of GIO, and the mechanism of GC-inhibited bone formation is not well known. Several studies suggest that parathyroid hormone (PTH) and hormone replacement therapy are effective for GIO. We therefore investigated whether PTH and estrogen would affect cell proliferation and alkaline phosphatase (ALP) activity inhibited by dexamethasone (Dex) in mouse osteoblastic cell-line MC3T3-E1 cells. Low-dose (10(-11) M) PTH as well as 10(-8) M 17-beta-estradiol (17beta-E2) significantly attenuated Dex-inhibited ALP activity, although 10(-8) M PTH did not affect it. ICI 182780 (10(-8) M) antagonized the effects of 17beta-E(2) on Dex-suppressed ALP activity. Neutralizing anti-IGF-I antibody (3 microg/ml) blocked the reverse effects of 17beta-E2 on ALP activity suppressed by Dex. PTH (10(-11) M), but not 17beta-E2, significantly attenuated [3H]thymidine incorporation inhibited by Dex. On the other hand, PTH and estrogen did not affect the level of 11-beta-hydrosteroid dehydrogenase type I mRNA increased by Dex. In conclusion, the present study demonstrated that low-dose PTH and estrogen reversed Dex-inhibited ALP activity in the mouse osteoblastic cell-line.