Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
809 result(s) for "Idrees, Muhammad"
Sort by:
Income inequality, financial development, and ecological footprint: fresh evidence from an asymmetric analysis
The emerging environmental concerns are entrenched in social issues, largely stem from income differences and power disparity. Income distribution and environmental disruption are increasingly pointed as obstacles in securing sustainable development goals and environmental preservation. The existing empirical studies have explored the environmental pollution impact of income inequality. However, the results are conflicting, and little attention has been paid to explore the short and long-run environmental impacts from a national viewpoint. Similarly, the role of aggregate income and financial sector for environmental quality has attracted considerable attention and many studies have provided conflicting empirical evidence. The literature generally ignores the importance of relative income in explaining environmental outcomes and also assumes symmetric association, ignoring asymmetric shocks. The present study explores the role of nonlinear associations in forming the links between income distribution and environmental quality using linear and nonlinear autoregressive distributed lag models from 1972 to 2018. The study follows the extended environmental Kuznets curve (EKC) approach. The results suggest that inequality promotes environmental pollution. Further financial development also escalates carbon emissions. The nonlinear analysis confirms the asymmetric effect of inequality on ecological footprint. The EKC, however, is not validated for Pakistan. The results suggest important policy implications.
Photopolymerization-based additive manufacturing of ceramics: A systematic review
Conversion of inorganic-organic frameworks (ceramic precursors and ceramic-polymer mixtures) into solid mass ceramic structures based on photopolymerization process is currently receiving plentiful attention in the field of additive manufacturing (3D printing). Various techniques (e.g., stereolithography, digital light processing, and two-photon polymerization) that are compatible with this strategy have so far been widely investigated. This is due to their cost-viability, flexibility, and ability to design and manufacture complex geometric structures. Different platforms related to these techniques have been developed too, in order to meet up with modern technology demand. Most relevant to this review are the challenges faced by the researchers in using these 3D printing techniques for the fabrication of ceramic structures. These challenges often range from shape shrinkage, mass loss, poor densification, cracking, weak mechanical performance to undesirable surface roughness of the final ceramic structures. This is due to the brittle nature of ceramic materials. Based on the summary and discussion on the current progress of material-technique correlation available, here we show the significance of material composition and printing processes in addressing these challenges. The use of appropriate solid loading, solvent, and preceramic polymers in forming slurries is suggested as steps in the right direction. Techniques are indicated as another factor playing vital roles and their selection and development are suggested as plausible ways to remove these barriers.
Superluminal propagation of surface plasmon polaritons via hybrid chiral quantum dots system
We present a novel methodology for enhancing superluminal surface plasmon polaritons (SPPs) propagations within a hybrid nanostructure configuration consisting of gold (Au) metal and chiral quantum dots (CQDs) medium. The arrangement of CQDs and metal hybrid nanostructures enables the production of SPPs when exposed to incident light. The resonances of SPPs within a hybrid nanostructure are determined through analytical calculations using Maxwell’s equations under specified boundary conditions, while the dynamics of the CQDs system are calculated using the density matrix approach. It is demonstrated that the propagation of SPPs is significantly influenced by both right-circularly polarized (RCP) and left-circularly polarized (LCP) SPPs. Additionally, we investigate the enhancement of superluminal SPPs propagation by varying the electron tunneling strength and the intensity of the control field within the hybrid system. The characteristics of RCP and LCP SPPs have been investigated, indicating a large negative group index and advancement in time. The observation of a large negative group index and advancement in time provides strong evidence for enhanced superluminal SPPs propagation within the proposed hybrid nanostructure. The results have potential applications in the fields of optical information processing, temporal cloaking, quantum communication, and the advancement of computer chip speed.
Workers’ Age and the Impact of Psychological Factors on the Perception of Safety at Construction Sites
The safety of construction workers is always a major concern at construction sites as the construction industry is inherently dangerous with many factors influencing worker safety. Several studies concluded that psychological factors such as workload, organizational relationships, mental stress, job security, and job satisfaction have significant effects on workers’ safety. However, research on psychological factors that are characteristic of different age groups have been limited. The aim of this study was to examine the impact of psychological factors on the perception of worker safety for two different age groups. After an extensive literature review, different psychological factors were identified, and a hypothetical research model was developed based on psychological factors that could affect workers’ perception of safety. A survey instrument was developed, and data were collected from seven different construction sites in Pakistan. Structural equation modeling (SEM) was employed to test the hypothetical model for both age groups. The results revealed that workload and job satisfaction are significantly dominant factors on workers’ perception of safety in older workers, whereas organizational relationships, mental stress, and job security are dominant factors for younger workers at construction sites.
Effect of exogenous alpha-tocopherol on physio-biochemical attributes and agronomic performance of lentil (Lens culinaris Medik.) under drought stress
Water being a vital part of cell protoplasm plays a significant role in sustaining life on earth; however, drastic changes in climatic conditions lead to limiting the availability of water and causing other environmental adversities. α-tocopherol being a powerful antioxidant, protects lipid membranes from the drastic effects of oxidative stress by deactivating singlet oxygen, reducing superoxide radicals, and terminating lipid peroxidation by reducing fatty acyl peroxy radicals under drought stress conditions. A pot experiment was conducted and two groups of lentil cultivar (Punjab-2009) were exposed to 20 and 25 days of drought induced stress by restricting the availability of water after 60 th day of germination. Both of the groups were sprinkled with α-tocopherol 100, 200 and 300 mg/L. Induced water deficit stress conditions caused a pronounced decline in growth parameters including absolute growth rate (AGR), leaf area index (LAI), leaf area ratio (LAR), root shoot ratio (RSR), relative growth rate (RGR), chlorophyll a, b, total chlorophyll content, carotenoids, and soluble protein content (SPC) which were significantly enhanced by exogenously applied α-tocopherol. Moreover, a significant increase was reported in total proline content (TPC), soluble sugar content (SSC), glycine betaine (GB) content, endogenous tocopherol levels, ascorbate peroxidase (APX), catalase (CAT) peroxidase (POD) and superoxide dismutase (SOD) activities. On the contrary, exogenously applied α-tocopherol significantly reduced the concentrations of malondialdehyde (MDA) and hydrogen peroxide (H 2 O 2 ). In conclusion, it was confirmed that exogenous application of α-tocopherol under drought induced stress regimes resulted in membrane protection by inhibiting lipid peroxidation, enhancing the activities of antioxidative enzymes (APX, CAT, POD, and SOD) and accumulation of osmolytes such as glycine betaine, proline and sugar. Consequently, modulating different growth, physiological and biochemical attributes.
Photo-Assisted Removal of Rhodamine B and Nile Blue Dyes from Water Using CuO–SiO2 Composite
Wastewater from the textile industries contaminates the natural water and affects the aquatic environment, soil fertility and biological ecosystem through discharge of different hazardous effluents. Therefore, it is essential to remove such dissolved toxic materials from water by applying more efficient techniques. We performed a comparative study on the removal of rhodamine B (RhB) and Nile blue (NB) from water through a catalytic/photocatalytic approach while using a CuO–SiO2 based nanocomposite. The CuO–SiO2 nanocomposite was synthesized through a sol–gel process using copper nitrate dihydrate and tetraethylorthosilicate as CuO and SiO2 precursors, respectively, with ammonia solution as the precipitating agent. The synthesized nanocomposites were characterized, for their structure, morphology, crystallinity, stability, surface area, pore size and pore volume, by using a scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Brunauer–Emmett–Teller (BET) techniques. The CuO–SiO2 nanocomposite was used for potential environmental applications in the terms of its catalytic and photocatalytic activities toward the degradation of rhodamine B (RhB) and Nile blue (NB) dyes, in the presence and absence of light, while monitoring the degradation process of dyes by UV-Visible spectroscopy. The catalytic efficiency of the same composite was studied and discussed in terms of changes in the chemical structures of dyes and other experimental conditions, such as the presence and absence of light. Moreover, the composite showed 85% and 90% efficiency towards the removal of rhodamine B and Nile blue dyes respectively. Thus, the CuO–SiO2 nanocomposite showed better efficiency toward removal of Nile blue as compared to rhodamine B dye while keeping other experimental variables constant. This can be attributed to the structure–property relationships and compatibility of a catalyst with the molecular structures of dyes.
Low-grade oncocytic tumour expands the spectrum of renal oncocytic tumours and deserves separate classification: a review of 23 cases from a single tertiary institute
AimsLow-grade oncocytic tumour (LOT) has recently been introduced as a potential distinct entity.MethodsAt the Indiana University department of pathology, primary renal epithelial neoplasms between 2005 and 2020 were searched after appropriate institutional review board permissions.ResultsTwenty-three cases (male/female ratio 14/9) with a median age of 66 (23–84 years) were identified. The majority of patients underwent partial nephrectomy (15/23, 65%), with a median tumour size of 4.0 cm (2.2–10.5 cm). Only one case had infiltration beyond the kidney (perinephric fat). Solid/diffuse proliferation of tightly packed oncocytic tumour cells and occasional tubule formations, with an abrupt edematous change in the stroma with loosely connected small clusters of tumour cells. Along with diffuse CK7 expression with lack of CD117 in all cases, vimentin was positive in 8/23 cases (35%, 5 focal). CD10 was expressed in 6/13 (46%, 4 focal). Alpha-Methylacyl-CoA Racemase (AMACR) was positive in 5/8 (63%) cases. Focal but intense cytoplasmic colloidal iron stain was present in 3/20 (15%) cases. Luminal or cytoplasmic/perinuclear precipitation was observed in 8/20 (40%) cases. Succinate Dehydrogenase B (SDHB) was performed in 6 cases, with all retained expression.ConclusionsLOT is a clinically indolent and potentially benign entity with distinguishable morphology and immunohistochemical profile that can be performed and be easily interpreted in most of surgical pathology settings. Additional studies with larger cohorts, comprehensive molecular evaluation and longer follow-up are needed to definitively recognise these tumours as a separate entity and to further address the possibility of active surveillance options in eligible patients.
A Miniaturized Dual-Band Frequency Selective Surface with Enhanced Capacitance Loading for WLAN Applications
This article presents a miniaturized dual-band frequency selective surface (FSS) based on capacitance-enhancing technique for RF shielding applications. The FSS incorporates two independent corner-modified square loop (CMSL) elements realized on a lossy dielectric, effectively suppressing the WiFi 2.45 GHz and WLAN 5.5 GHz bands simultaneously. The capacitance of FSS element is enhanced through corner truncation without using additional lumped elements. The symmetric geometry enables the FSS shield to manifest angularly stable and polarization-insensitive spectral responses under various oblique incident angles. Moreover, an equivalent circuit model (ECM) of the FSS structure is designed. A finite FSS prototype is fabricated and tested to verify the EM simulations. The measured results are in good agreement with the simulated responses. More importantly, the proposed design is scalable to other frequencies and is capable of selectively mitigating electromagnetic interference or confine the EM fields.
Unsteady squeezing flow of magnetohydrodynamic carbon nanotube nanofluid in rotating channels with entropy generation and viscous dissipation
The most favorable gift of modern science is nanofluid. The nanofluid can able to move freely through micro channels with the spreading of nanoparticles. Due to improved convection between the base liquid surfaces and nanoparticles, the nano suspensions express high thermal conductivity. Also, the benefits of suspending nanoparticles in base fluids are increased heat capacity, surface area, effective thermal conductivity, collision, and interaction among particles. This research aim to study squeezing flow of carbon nanotubes based on water (H2O) in rotating channels. Entropy generation is evaluated and for this purpose, second law of thermodynamics is employed. The influences of thermal radiation, viscous dissipation, and applied magnetic field on nanofluid are taken into account. The flow of the nanofluid is considered in unsteady three dimensions. The transformed ordinary differential equations (ODEs) are solved by homotopy analysis method with the help of similarity variables. Results obtained for single and multi-wall carbon nanotubes are compared. Plots have been presented in order to examine how the velocities, temperature, and entropy profiles become affected by numerous physical parameters. Generally, the velocity profiles escalate when the upper plate of the channel moves toward the lower stretching one and reduces when the upper plate is moving away from the lower one. The velocity profile in y-direction escalates with the escalation in nanoparticle volume fraction and suction parameter while the rotation parameter bids dual behavior with the escalating values. The velocity profile in x-direction bids the oscillatory behavior with the enhancement in nanoparticle volume fraction, rotation parameter, and magnetic parameter. The physical properties of carbon nanotubes, thermo physical properties of carbon nanotubes and nanofluid of some base fluids, and thermal conductivity of carbon nanotubes with different volume fractions are shown through tables.