Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
643 result(s) for "Ijaz Khan, Muhammad"
Sort by:
Applications of bioconvection for tiny particles due to two concentric cylinders when role of Lorentz force is significant
The bioconvection flow of tiny fluid conveying the nanoparticles has been investigated between two concentric cylinders. The contribution of Lorenz force is also focused to inspect the bioconvection thermal transport of tiny particles. The tiny particles are assumed to flow between two concentric cylinders of different radii. The first cylinder remains at rest while flow is induced due to second cylinder which rotates with uniform velocity. Furthermore, the movement of tiny particles follows the principle of thermophoresis and Brownian motion as a part of thermal and mass gradient. Similarly, the gyro-tactic microorganisms swim in the nanofluid as a response to the density gradient and constitute bio-convection. The problem is modeled by using the certain laws. The numerical outcomes are computed by using RKF -45 method. The graphical simulations are performed for flow parameters with specific range like 1≤Re≤5, 1≤ Ha ≤5, 0.5≤ Nt ≤2.5, 1≤ Nb ≤3, 0.2≤ Sc ≤1.8, 0.2≤ Pe ≤1.0 and 0.2≤Ω≤1.0. It is observed that the flow velocity decreases with the increase in the Hartmann number that signifies the magnetic field. This outcome indicates that the flow velocity can be controlled externally through the magnetic field. Also, the increase in the Schmidt numbers increases the nanoparticle concentration and the motile density.
Scheduling equal-length jobs with arbitrary sizes on uniform parallel batch machines
We consider the problem of scheduling jobs with equal lengths and arbitrary sizes on uniform parallel batch machines with different capacities. Each machine can only process the jobs whose sizes are not larger than its capacity. Several jobs can be processed as a batch simultaneously on a machine, as long as their total size does not exceed the machine’s capacity. The objective is to minimize makespan. Under a divisibility constraint, we obtain two efficient exact algorithms. For the general problem, we obtain an efficient 2-approximation algorithm. Previous work has shown that the problem cannot be approximated to within an approximation ratio better than 2, unless P = NP, even when all machines have identical speeds and capacities.
Numerical simulation for entropy generation in peristaltic flow with single and multi-wall carbon nanotubes
Purpose The novel mechanical, chemical and thermodynamics characteristics of both single- and multi-wall carbon nanotubes (CNTs) make them a subject of much attention for the scientists and engineers from all domains. Fluid flows subject to CNTs are significant in biomedical engineering, energy storage systems, domestic and industrial cooling, automobile industries and solar energy collectors, etc. Keeping such effectiveness of CNTs in mind, this paper aims to examine peristaltic flow subject to CNTs in an asymmetric tapered channel. Both single and multiple walls CNTs are considered. The viscosity of nanomaterial depends on nanoparticles volume fraction and temperature. Total entropy rate through second law of thermodynamics is calculated. Heat source/sink and nonlinear heat flux are accounted. Design/methodology/approach The complicated flow expressions are simplified through lubrication approach. The velocity, temperature and entropy expressions are numerically solved by the built-in-shooting method. Findings The solutions for entropy generation, temperature and velocity are plotted, and the influences of pertinent variables are examined. The authors noticed that entropy generation is an increasing function of the Brinkman number. Originality/value The originality of this work is to communicate peristaltic CNTs-based nanomaterial peristaltic flow of viscous fluid in an asymmetric channel. No such consideration is yet published in the literature.
Classification, Synthetic, and Characterization Approaches to Nanoparticles, and Their Applications in Various Fields of Nanotechnology: A Review
Nanoparticles typically have dimensions of less than 100 nm. Scientists around the world have recently become interested in nanotechnology because of its potential applications in a wide range of fields, including catalysis, gas sensing, renewable energy, electronics, medicine, diagnostics, medication delivery, cosmetics, the construction industry, and the food industry. The sizes and forms of nanoparticles (NPs) are the primary determinants of their properties. Nanoparticles’ unique characteristics may be explored for use in electronics (transistors, LEDs, reusable catalysts), energy (oil recovery), medicine (imaging, tumor detection, drug administration), and more. For the aforementioned applications, the synthesis of nanoparticles with an appropriate size, structure, monodispersity, and morphology is essential. New procedures have been developed in nanotechnology that are safe for the environment and can be used to reliably create nanoparticles and nanomaterials. This research aims to illustrate top-down and bottom-up strategies for nanomaterial production, and numerous characterization methodologies, nanoparticle features, and sector-specific applications of nanotechnology.
Irreversibility in two-dimensional magneto-nanomaterial flow of Jeffrey fluid with Arrhenius activation energy
Purpose The purpose of this paper is to study entropy generation in magneto-Jeffrey nanomaterial flow by impermeable moving boundary. Adopted nanomaterial model accounts Brownian and thermophoretic diffusions. Modeling is arranged for thermal radiation, nonlinear convection and viscous dissipation. In addition, the concept of Arrhenius activation energy associated with chemical reaction are introduced for description of mass transportation. Design/methodology/approach Homotopy algorithms are used to compute the system of ordinary differential equations. Findings The afore-stated analysis clearly notes that simultaneous aspects of activation energy and entropy generation are not yet investigated. Therefore, the intention here is to consider such effects to formulate and investigate the magneto-Jeffrey nanoliquid flow by impermeable moving surface. Originality/value As per the authors’ knowledge, no such work has yet been published in the literature.
Entropy generation analysis in flow of thixotropic nanofluid
Purpose The purpose of this paper is to address entropy generation in flow of thixotropic nonlinear radiative nanoliquid over a variable stretching surface with impacts of inclined magnetic field, Joule heating, viscous dissipation, heat source/sink and chemical reaction. Characteristics of nanofluid are described by Brownian motion and thermophoresis effect. At surface of the sheet zero mass flux and convective boundary condition are considered. Design/methodology/approach Considered flow problem is mathematically modeled and the governing system of partial differential equations is transformed into ordinary ones by using suitable transformation. The transformed ordinary differential equations system is figure out by homotopy algorithm. Outcomes of pertinent flow variables on entropy generation, skin friction, concentration, temperature, velocity, Bejan, Sherwood and Nusselts numbers are examined in graphs. Major outcomes are concluded in final section. Findings Velocity profile increased versus higher estimation of material and wall thickness parameter while it decays through larger Hartmann number. Furthermore, skin friction coefficient upsurges subject to higher values of Hartmann number and magnitude of skin friction coefficient decays via materials parameters. Thermal field is an increasing function of Hartmann number, radiation parameter, thermophoresis parameter and Eckert number. Originality/value The authors have discussed entropy generation in flow of thixotropic nanofluid over a variable thicked surface. No such consideration is yet published in the literature.
Hall Current and Soret Effects on Unsteady MHD Rotating Flow of Second-Grade Fluid through Porous Media under the Influences of Thermal Radiation and Chemical Reactions
The unsteady MHD free convection heat and mass transfer flow of a viscous, incompressible, and electrically conducting fluid passing through a vertical plate embedded in a porous medium in the presence of chemical reactions and thermal radiation is investigated. The effects of the Hall current, rotation and Soret are studied. Using the perturbation approach, one can obtain an accurate analytical solution to the governing equations for the fluid velocity, fluid temperature, and species concentration, provided that the initial and boundary conditions are acceptable. It is possible to obtain expressions for the shear stress, rate of heat transfer, and rate of mass transfer for both plates with the ramping temperature and isothermal conditions. On the one hand, the numerical values of the primary and secondary fluid velocities, fluid temperature, and species concentration are presented graphically. On the other hand, the numerical values of the shear stress and rate of mass transfer for the plate are presented in tabular form for various values of the relevant flow parameters. These values are given for a range of pertinent flow parameters. It was determined that an increase in the Hall and Soret parameters over the whole fluid area leads to a corresponding increase in the resulting velocity. The resultant velocity continually climbs to a high level due to the contributions of the thermal and solute buoyancy forces. Lowering the heat source parameter reduces the temperature distribution, resulting in a lower overall temperature. When there is a rise in the chemical reaction parameter over the whole fluid area, there is a corresponding decrease in the concentration. The concentration buoyancy force, Hall current, and Prandtl number reduce the skin friction. On the other hand, the permeability of the porous medium, rotation, chemical reaction, the Soret number, thermal buoyancy force, and mass diffusion all have the opposite effects on the skin friction.
Electromagneto squeezing rotational flow of Carbon (C)-Water (H2O) kerosene oil nanofluid past a Riga plate: A numerical study
This article predicts the electromagneto squeezing rotational flow of carbon-water nanofluid between two stretchable Riga plates. Riga plate is known as electromagnetic actuator which is the combination of permanent magnets and a span wise aligned array of alternating electrodes mounted on a plane surface. Mathematical model is developed for the flow problem with the phenomena of melting heat transfer, viscous dissipation and heat generation/absorption. Water and kerosene oil are utilized as the base fluids whereas single and multi-wall carbon nanotubes as the nanomaterials. Numerical solutions of the dimensionless problems are constructed by using built in shooting method. The correlation expressions for Nusselt number and skin friction coefficient are developed and examined through numerical data. Characteristics of numerous relevant parameters on the dimensionless temperature and velocity are sketched and discussed. Horizontal velocity is found to enhance for higher modified Hartman number.
Glycyrrhizic acid-loaded pH-sensitive poly-(lactic-co-glycolic acid) nanoparticles for the amelioration of inflammatory bowel disease
To fabricate and evaluate the therapeutic efficacy of glycyrrhizic acid (GA)-loaded pH-sensitive nanoformulations that specifically target and combat mucosal inflammation of the colon. GA-loaded Eudragit S100/poly-(lactic-co-glycolic acid) nanoparticles were developed through modified double-emulsion evaporation coupled with solvent evaporation coating techniques and analyzed for physicochemical characteristics, surface chemistry, release kinetics, site-retention and therapeutic effectiveness. Nanoparticles have a particle size of approximately 200 nm, high encapsulation efficiency, desired surface chemistry with pH-dependent and sustained drug release behavior following the Gompertz kinetic model. retention and therapeutic effectiveness in the inflamed colon tissues were confirmed by macroscopic and microscopic indices, cytokine analysis and antioxidant assays. GA-loaded Eudragit S100/poly-(lactic-co-glycolic acid) nanoparticles could efficiently deliver GA to the colon and ameliorate the mucosal inflammation for a prolonged duration.
A Brief Assessment on Recent Developments in Efficient Electrocatalytic Nitrogen Reduction with 2D Non-Metallic Nanomaterials
In recent years, the synthesis of ammonia (NH3) has been developed by electrocatalytic technology that is a potential way to effectively replace the Haber–Bosch process, which is an industrial synthesis of NH3. Industrial ammonia has caused a series of problems for the population and environment. In the face of sustainable green synthesis methods, the advantages of electrocatalytic nitrogen reduction for synthesis of NH3 in aqueous media have attracted a great amount of attention from researchers. This review summarizes the recent progress on the highly efficient electrocatalysts based on 2D non-metallic nanomaterial and provides a brief overview of the synthesis principle of electrocatalysis and the performance measurement indicators of electrocatalysts. Moreover, the current development of N2 reduction reaction (NRR) electrocatalyst is discussed and prospected.