Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
137
result(s) for
"Ikeuchi, Masahiko"
Sort by:
Phycobilisome: architecture of a light-harvesting supercomplex
2013
The phycobilisome (PBS) is an extra-membrane supramolecular complex composed of many chromophore (bilin)-binding proteins (phycobiliproteins) and linker proteins, which generally are colorless. PBS collects light energy of a wide range of wavelengths, funnels it to the central core, and then transfers it to photosystems. Although phycobiliproteins are evolutionarily related to each other, the binding of different bilin pigments ensures the ability to collect energy over a wide range of wavelengths. Spatial arrangement and functional tuning of the different phycobiliproteins, which are mediated primarily by linker proteins, yield PBS that is efficient and versatile light-harvesting systems. In this review, we discuss the functional and spatial tuning of phycobiliproteins with a focus on linker proteins.
Journal Article
Structure of a cyanobacterial photosystem I tetramer revealed by cryo-electron microscopy
2019
Photosystem I (PSI) functions to harvest light energy for conversion into chemical energy. The organisation of PSI is variable depending on the species of organism. Here we report the structure of a tetrameric PSI core isolated from a cyanobacterium,
Anabaena
sp. PCC 7120, analysed by single-particle cryo-electron microscopy (cryo-EM) at 3.3 Å resolution. The PSI tetramer has a C2 symmetry and is organised in a dimer of dimers form. The structure reveals interactions at the dimer-dimer interface and the existence of characteristic pigment orientations and inter-pigment distances within the dimer units that are important for unique excitation energy transfer. In particular, characteristic residues of PsaL are identified to be responsible for the formation of the tetramer. Time-resolved fluorescence analyses showed that the PSI tetramer has an enhanced excitation-energy quenching. These structural and spectroscopic findings provide insights into the physiological significance of the PSI tetramer and evolutionary changes of the PSI organisations.
Photosystem I (PSI) is embedded in thylakoid membranes of photosynthetic organisms, converting light energy into chemical energy, and its oligomeric state varies among different organisms. Here the authors present the 3.3 Å resolution cryo-EM structure of the PSI tetramer from the cyanobacterium
Anabaena
sp. PCC 7120.
Journal Article
Association between infrapatellar fat pad ultrasound elasticity and anterior knee pain in patients with knee osteoarthritis
2023
This study investigates whether infrapatellar fat pad (IPFP) elasticity is associated with anterior knee pain in patients with knee osteoarthritis (KOA). The IPFP elasticity of 97 patients with KOA (Kellgren and Lawrence [KL] grades of the femorotibial and patellofemoral joints ≥ 2 and ≤ 2, respectively), aged 46–86 years, was evaluated via shear wave speed using ultrasound elastography. The patients were divided into two groups according to the presence or absence of anterior knee pain. Univariate analyses were used to compare patient age, sex, femorotibial KL grade, magnetic resonance imaging findings (Hoffa, effusion synovitis, bone marrow lesion scores, and IPFP size), and IPFP elasticity between the groups. Multivariate logistic regression analyses were subsequently performed using selected explanatory variables. IPFP elasticity was found to be associated with anterior knee pain in the univariate (p = 0.007) and multivariate (odds ratio: 61.12, 95% CI 1.95–1920.66; p = 0.019) analyses. Anterior knee pain is strongly associated with stiffer IPFPs regardless of the femorotibial KL grade, suggesting that ultrasound elastography is useful for the diagnosis of painful IPFP in patients with KOA.
Journal Article
The effect of postmenopausal osteoporosis on subchondral bone pathology in a rat model of knee osteoarthritis
by
Aso, Koji
,
Wada, Hiroyuki
,
Izumi, Masashi
in
692/308/1426
,
692/699/1670/316
,
692/699/1670/407
2023
This study aimed to investigate the additional effect of ovariectomy-induced osteoporosis (OP) on the pathology of knee osteoarthritis (OA) in a rat meniscectomized model, particularly focusing on subchondral bone changes and pain behaviour. Rats were divided into four groups, sham, OP, OA, OP plus OA, and assessed for histology, osteoclast activity, subchondral bone microstructure, and pain-related behaviour. Rats with OP plus OA had significantly increased calcified cartilage and subchondral bone damage scores, increased densities of subchondral osteoclasts in the weight-bearing area, and more porous subchondral trabecular bone compared with rats with OA. Loss of tidemark integrity was observed most frequently in rats with OP plus OA. The density of subchondral osteoclasts correlated with the calcified cartilage and subchondral bone damage score in rats with OA (OA and OP plus OA). No significant differences in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) expression ratio in subchondral bone and pain-related behavioural tests were observed between rats with OA and rats with OP plus OA. In rats with OA, coexisting OP potentially aggravated OA pathology mainly in calcified cartilage and subchondral trabecular bone by increasing subchondral osteoclast activity.
Journal Article
Biosynthesis of a sulfated exopolysaccharide, synechan, and bloom formation in the model cyanobacterium Synechocystis sp. strain PCC 6803
2021
Extracellularpolysaccharides of bacteria contribute to biofilm formation, stress tolerance, and infectivity. Cyanobacteria, the oxygenic photoautotrophic bacteria, uniquely produce sulfated extracellular polysaccharides among bacteria to support phototrophic biofilms. In addition, sulfated polysaccharides of cyanobacteria and other organisms have been focused as beneficial biomaterial. However, very little is known about their biosynthesis machinery and function in cyanobacteria. Here, we found that the model cyanobacterium, Synechocystis sp. strain PCC 6803, formed bloom-like cell aggregates embedded in sulfated extracellular polysaccharides (designated as synechan) and identified whole set of genes responsible for synechan biosynthesis and its transcriptional regulation, thereby suggesting a model for the synechan biosynthesis apparatus. Because similar genes are found in many cyanobacterial genomes with wide variation, our findings may lead elucidation of various sulfated polysaccharides, their functions, and their potential application in biotechnology. Bacteria are single-cell microorganisms that can form communities called biofilms, which stick to surfaces such as rocks, plants or animals. Biofilms confer protection to bacteria and allow them to colonize new environments. The physical scaffold of biofilms is a viscous matrix made of several molecules, the main one being polysaccharides, complex carbohydrates formed by many monosaccharides (single sugar molecules) joined together. Cyanobacteria, also known as blue-green algae, are a type of bacteria that produce oxygen and use sunlight as an energy source, just as plants and algae do. Cyanobacteria produce extracellular polysaccharides that contain sulfate groups. These sulfated polysaccharides are also produced by animals and algae but are not common in other bacteria or plants. One possible role of sulfated, extracellular polysaccharides in cyanobacteria is keeping cells together in the floating aggregates found in cyanobacterial blooms. These are visible discolorations of the water caused by an overgrowth of cyanobacteria that occur in lakes, estuaries and coastal waters. However, little is known about how these polysaccharides are synthesized in cyanobacteria and what their natural role is. Maeda et al. found a strain of cyanobacteria that formed bloom-like aggregates that were embedded in sulfated extracellular polysaccharides. Using genetic engineering techniques, the researchers identified a set of genes responsible for producing a sulfated extracellular polysaccharide and regulating its levels. They also found that cell aggregates of cyanobacteria can float without having intracellular gas vesicles, which was previously thought to enable blooms to float. The results of the present study could have applications for human health, since many sulfated polysaccharides have antiviral, antitumor or anti-inflammatory properties, and similar genes are found in many cyanobacteria. In addition, these findings could be useful for controlling toxic cyanobacterial blooms, which are becoming increasingly problematic for society.
Journal Article
Three cyanobacteriochromes work together to form a light color-sensitive input system for c-di-GMP signaling of cell aggregation
2015
Significance Cyanobacteria have sophisticated photosensory systems to adapt to ambient-light conditions to improve oxygenic photosynthesis efficiency. Their genomes contain many genes encoding cyanobacteriochromes (CBCRs), which are the photoreceptors of light-signaling pathways. Although the photochemical properties of many CBCRs have been characterized, whether and how multiple photoreceptors work together are unknown. Herein we describe how three CBCRs work together in a light color-sensitive manner to regulate cyanobacterial cell aggregation. The three CBCRs have distinguishable, but congruent, light color-dependent c-di-GMP synthetic and/or degrading activities. Ours is the first report, to our knowledge, concerning synchronization of distinctive CBCR activities, which emphasizes the underlying need for CBCR photoreceptors with diverse activities.
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that have diverse spectral properties and domain compositions. Although large numbers of CBCR genes exist in cyanobacterial genomes, no studies have assessed whether multiple CBCRs work together. We recently showed that the diguanylate cyclase (DGC) activity of the CBCR SesA from Thermosynechococcus elongatus is activated by blue-light irradiation and that, when irradiated, SesA, via its product cyclic dimeric GMP (c-di-GMP), induces aggregation of Thermosynechococcus vulcanus cells at a temperature that is suboptimum for single-cell viability. For this report, we first characterize the photobiochemical properties of two additional CBCRs, SesB and SesC. Blue/teal light-responsive SesB has only c-di-GMP phosphodiesterase (PDE) activity, which is up-regulated by teal light and GTP. Blue/green light-responsive SesC has DGC and PDE activities. Its DGC activity is enhanced by blue light, whereas its PDE activity is enhanced by green light. A Î sesB mutant cannot suppress cell aggregation under teal-green light. A Î sesC mutant shows a less sensitive cell-aggregation response to ambient light. Î sesA/ Î sesB/ Î sesC shows partial cell aggregation, which is accompanied by the loss of color dependency, implying that a nonphotoresponsive DGC(s) producing c-di-GMP can also induce the aggregation. The results suggest that SesB enhances the light color dependency of cell aggregation by degrading c-di-GMP, is particularly effective under teal light, and, therefore, seems to counteract the induction of cell aggregation by SesA. In addition, SesC seems to improve signaling specificity as an auxiliary backup to SesA/SesB activities. The coordinated action of these three CBCRs highlights why so many different CBCRs exist.
Journal Article
Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism
by
Ishizuka, Takami
,
Shiba, Tomoo
,
Muraki, Norifumi
in
Amino Acid Sequence
,
Anabaena
,
Anabaena - chemistry
2013
Cyanobacteriochromes are cyanobacterial tetrapyrrole-binding photoreceptors that share a bilin-binding GAF domain with photoreceptors of the phytochrome family. Cyanobacteriochromes are divided into many subclasses with distinct spectral properties. Among them, putative phototaxis regulators PixJs of Anabaena sp. PCC 7120 and Thermosynechococcus elongatus BP-1 (denoted as AnPixJ and TePixJ, respectively) are representative of subclasses showing red-green-type and blue/green-type reversible photoconversion, respectively. Here, we determined crystal structures for the AnPixJ GAF domain in its red-absorbing 15 Z state (Pr) and the TePixJ GAF domain in its green-absorbing 15 E state (Pg). The overall structure of these proteins is similar to each other and also similar to known phytochromes. Critical differences found are as follows: (i) the chromophore of AnPixJ Pr is phycocyanobilin in a C5- Z ,syn/C10- Z ,syn/C15- Z ,anti configuration and that of TePixJ Pg is phycoviolobilin in a C10- Z ,syn/C15- E ,anti configuration, (ii) a side chain of the key aspartic acid is hydrogen bonded to the tetrapyrrole rings A, B and C in AnPixJ Pr and to the pyrrole ring D in TePixJ Pg, (iii) additional protein-chromophore interactions are provided by subclass-specific residues including tryptophan in AnPixJ and cysteine in TePixJ. Possible structural changes following the photoisomerization of the chromophore between C15- Z and C15- E are discussed based on the X-ray structures at 1.8 and 2.0-Å resolution, respectively, in two distinct configurations.
Journal Article
Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis
by
Tani, Toshikazu
,
Izumi, Masashi
,
Ikeuchi, Masahiko
in
Acid sensing ion channel (ASIC)
,
Acid Sensing Ion Channels - metabolism
,
Animal behavior
2012
Background
Recent data have suggested a relationship between acute arthritic pain and acid sensing ion channel 3 (ASIC3) on primary afferent fibers innervating joints. The purpose of this study was to clarify the role of ASIC3 in a rat model of osteoarthritis (OA) which is considered a degenerative rather than an inflammatory disease.
Methods
We induced OA
via
intra-articular mono-iodoacetate (MIA) injection, and evaluated pain-related behaviors including weight bearing measured with an incapacitance tester and paw withdrawal threshold in a von Frey hair test, histology of affected knee joint, and immunohistochemistry of knee joint afferents. We also assessed the effect of ASIC3 selective peptide blocker (APETx2) on pain behavior, disease progression, and ASIC3 expression in knee joint afferents.
Results
OA rats showed not only weight-bearing pain but also mechanical hyperalgesia outside the knee joint (secondary hyperalgesia). ASIC3 expression in knee joint afferents was significantly upregulated approximately twofold at Day 14. Continuous intra-articular injections of APETx2 inhibited weight distribution asymmetry and secondary hyperalgesia by attenuating ASIC3 upregulation in knee joint afferents. Histology of ipsilateral knee joint showed APETx2 worked chondroprotectively if administered in the early, but not late phase.
Conclusions
Local ASIC3 immunoreactive nerve is strongly associated with weight-bearing pain and secondary hyperalgesia in MIA-induced OA model. APETx2 inhibited ASIC3 upregulation in knee joint afferents regardless of the time-point of administration. Furthermore, early administration of APETx2 prevented cartilage damage. APETx2 is a novel, promising drug for OA by relieving pain and inhibiting disease progression.
Journal Article
Tlr1612 is the major repressor of cell aggregation in the light-color-dependent c-di-GMP signaling network of Thermosynechococcus vulcanus
2018
Cyclic diguanylate (c-di-GMP) is a bacterial second messenger involved in sessile/motile lifestyle transitions. We previously reported that c-di-GMP is a crucial inducer of cell aggregation of the cyanobacterium
Thermosynechococcus vulcanus
. The three cooperating cyanobacteriochrome photoreceptors (SesA/B/C) regulate cell aggregation in a light color–dependent manner by synthesizing/degrading c-di-GMP. Although a variety of c-di-GMP signaling proteins are encoded in cyanobacterial genomes, how c-di-GMP signaling networks are organized remains elusive. Here we experimentally demonstrate that the cellulose synthase Tll0007, which is essential for cell aggregation, binds c-di-GMP although the affinity is low (K
d
= 63.9 ± 5.1 µM). We also show that SesA—the main trigger of cell aggregation—is subject to strict product feedback inhibition (IC50 = 1.07 ± 0.13 µM). These results suggest that SesA-produced c-di-GMP may not directly bind to Tll0007. We therefore systematically analyzed all 10 of the genes encoding proteins containing a c-di-GMP synthesis/degradation domain. We identified Tlr1612, harboring both domains, as the major repressor of cell aggregation under the repressing teal-green light irradiation.
tlr1612
acts downstream of
sesA
and is not regulated transcriptionally by light color, suggesting that Tlr1612 may be involved in c-di-GMP amplification in the signaling cascade. Post-transcriptional control is likely crucial for the light-regulated c-di-GMP signaling.
Journal Article
Attachment of phycobilisomes in an antenna–photosystem I supercomplex of cyanobacteria
by
Webber-Birungi, Mariam T.
,
Kondo, Kumiko
,
Watanabe, Mai
in
Absorption spectra
,
Anabaena
,
Anabaena - metabolism
2014
Oxygenic photosynthesis is driven by photosystems I and II (PSI and PSII, respectively). Both have specific antenna complexes and the phycobilisome (PBS) is the major antenna protein complex in cyanobacteria, typically consisting of a core from which several rod-like subcomplexes protrude. PBS preferentially transfers light energy to PSII, whereas a PSI-specific antenna has not been identified. The cyanobacterium Anabaena sp. PCC 7120 has rod–core linker genes (cpcG1 -cpcG2-cpcG3-cpcG4). Their products, except CpcG3, have been detected in the conventional PBS. Here we report the isolation of a supercomplex that comprises a PSI tetramer and a second, unique type of a PBS, specific to PSI. This rod-shaped PBS includes phycocyanin (PC) and CpcG3 (hereafter renamed “CpcL”), but no allophycocyanin or CpcGs. Fluorescence excitation showed efficient energy transfer from PBS to PSI. The supercomplex was analyzed by electron microscopy and single-particle averaging. In the supercomplex, one to three rod-shaped CpcL–PBSs associate to a tetrameric PSI complex. They are mostly composed of two hexameric PC units and bind at the periphery of PSI, at the interfaces of two monomers. Structural modeling indicates, based on 2D projection maps, how the PsaI, PsaL, and PsaM subunits link PSI monomers into dimers and into a rhombically shaped tetramer or “pseudotetramer.” The 3D model further shows where PBSs associate with the large subunits PsaA and PsaB of PSI. It is proposed that the alternative form of CpcL–PBS is functional in harvesting energy in a wide number of cyanobacteria, partially to facilitate the involvement of PSI in nitrogen fixation.
Journal Article