Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
134 result(s) for "Imamura, Hiromi"
Sort by:
Shear stress activates mitochondrial oxidative phosphorylation by reducing plasma membrane cholesterol in vascular endothelial cells
Vascular endothelial cells (ECs) sense and respond to hemodynamic shear stress, which is critical for circulatory homeostasis and the pathophysiology of vascular diseases. The mechanisms of shear stress mechanotransduction, however, remain elusive. We previously demonstrated a direct role of mitochondria in the purinergic signaling of shear stress: shear stress increases mitochondrial adenosine triphosphate (ATP) production, triggering ATP release and Ca2+ signaling via EC purinoceptors. Here, we showed that shear stress rapidly decreases cholesterol in the plasma membrane, thereby activating mitochondrial ATP production. Imaging using domain 4 mutant-derived cholesterol biosensors showed that the application of shear stress to cultured ECs markedly decreased cholesterol levels in both the outer and inner plasma membrane bilayers. Flow cytometry showed that the cholesterol levels in the outer bilayer decreased rapidly after the onset of shear stress, reached a minimum (around 60% of the control level) at 10 min, and plateaued thereafter. After the shear stress ceased, the decreased cholesterol levels returned to those seen in the control. A biochemical analysis showed that shear stress caused both the efflux and the internalization of plasma membrane cholesterol. ATP biosensor imaging demonstrated that shear stress significantly increased mitochondrial ATP production. Similarly, the treatment of cells with methyl-β-cyclodextrin (MβCD), a membrane cholesterol-depleting agent, increased mitochondrial ATP production. The addition of cholesterol to cells inhibited the increasing effects of both shear stress and MβCD on mitochondrial ATP production in a dose-dependent manner. These findings indicate that plasma membrane cholesterol dynamics are closely coupled to mitochondrial oxidative phosphorylation in ECs.
Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity
Glucose is the mandatory fuel for the brain, yet the relative contribution of glucose and lactate for neuronal energy metabolism is unclear. We found that increased lactate, but not glucose concentration, enhances the spiking activity of neurons of the cerebral cortex. Enhanced spiking was dependent on ATP-sensitive potassium (K ATP ) channels formed with KCNJ11 and ABCC8 subunits, which we show are functionally expressed in most neocortical neuronal types. We also demonstrate the ability of cortical neurons to take-up and metabolize lactate. We further reveal that ATP is produced by cortical neurons largely via oxidative phosphorylation and only modestly by glycolysis. Our data demonstrate that in active neurons, lactate is preferred to glucose as an energy substrate, and that lactate metabolism shapes neuronal activity in the neocortex through K ATP channels. Our results highlight the importance of metabolic crosstalk between neurons and astrocytes for brain function.
Monitoring ATP dynamics in electrically active white matter tracts
In several neurodegenerative diseases and myelin disorders, the degeneration profiles of myelinated axons are compatible with underlying energy deficits. However, it is presently impossible to measure selectively axonal ATP levels in the electrically active nervous system. We combined transgenic expression of an ATP-sensor in neurons of mice with confocal FRET imaging and electrophysiological recordings of acutely isolated optic nerves. This allowed us to monitor dynamic changes and activity-dependent axonal ATP homeostasis at the cellular level and in real time. We find that changes in ATP levels correlate well with compound action potentials. However, this correlation is disrupted when metabolism of lactate is inhibited, suggesting that axonal glycolysis products are not sufficient to maintain mitochondrial energy metabolism of electrically active axons. The combined monitoring of cellular ATP and electrical activity is a novel tool to study neuronal and glial energy metabolism in normal physiology and in models of neurodegenerative disorders. The brain contains an intricate network of nerve cells that receive, process, send and store information. This information travels as electrical impulses along a long, thin part of each nerve cell known as the nerve fiber or axon. The act of sending these electrical signals requires a lot of energy, and energy in cells is most often stored within molecules of adenosine triphosphate (called ATP for short). Importantly, a better understanding of how the production and consumption of ATP in nerve cells relates to electrical activity would help scientists to better understand how a shortage of energy in the brain contributes to diseases like multiple sclerosis. However, to date, it has been challenging to study the dynamics of ATP in nerve cells that are active. Now, Trevisiol et al. describe a new system that allows changes in ATP levels to be seen within active nerve cells. First, mice were genetically engineered to produce a molecule that works like an ATP sensor only in their nerve cells. This made it possible to visualize the amount of ATP inside the axons in real-time using a microscope. Measuring ATP levels and recording the electrical signals moving along an axon at the same time allowed Trevisiol et al. to see how ATP content and electrical activity correlate and regulate each other. The experiments reveal that strong electrical activity reduces the ATP content of the axon. Trevisiol et al. also discovered that nerve cells are unable to generate enough energy on their own to sustain their electrical activity. These results provide evidence that other cells in the brain – most likely non-nerve cells called oligodendrocytes – play an active role in delivering energy-rich substances to the axons of nerve cells. In the future, the same tools and approaches could be used to monitor ATP levels and electrical activity in mice that model neurological disorders. Such experiments could tell scientists more about how disturbing energy production in nerve cells affects these diseases.
High and stable ATP levels prevent aberrant intracellular protein aggregation in yeast
Adenosine triphosphate (ATP) at millimolar levels has recently been implicated in the solubilization of cellular proteins. However, the significance of this high ATP level under physiological conditions and the mechanisms that maintain ATP remain unclear. We herein demonstrated that AMP-activated protein kinase (AMPK) and adenylate kinase (ADK) cooperated to maintain cellular ATP levels regardless of glucose levels. Single-cell imaging of ATP-reduced yeast mutants revealed that ATP levels in these mutants underwent stochastic and transient depletion, which promoted the cytotoxic aggregation of endogenous proteins and pathogenic proteins, such as huntingtin and α-synuclein. Moreover, pharmacological elevations in ATP levels in an ATP-reduced mutant prevented the accumulation of α-synuclein aggregates and its cytotoxicity. The present study demonstrates that cellular ATP homeostasis ensures proteostasis and revealed that suppressing the high volatility of cellular ATP levels prevented cytotoxic protein aggregation, implying that AMPK and ADK are important factors that prevent proteinopathies, such as neurodegenerative diseases. Cells use a chemical called adenosine triphosphate (ATP) as a controllable source of energy. Like a battery, each ATP molecule contains a specific amount of energy that can be released when needed. Cells just need enough ATP to survive, but most cells store a lot more than they need. It is unclear why cells keep so much ATP, or whether this excess ATP has any other purpose. To answer these questions, Takaine et al. identified mutants of the yeast Saccharomyces cerevisiae that had low levels of ATP, and studied how these cells differ from normal yeast The results showed that, in S. cerevisiae cells with lower and variable levels of ATP, proteins stick together, forming clumps. Proteins are molecules that perform diverse roles, keeping cells alive. When they clump together, they stop working and can cause cells to die. Further experiments showed that reducing the levels of ATP just for a short time increased the rate at which proteins stick together. Taken together, Takaine et al.’s results suggest that ATP plays a role in stopping proteins from sticking together, explaining why cells may store excess ATP, since it could aid survival. Protein clumps, also called aggregates, are a key feature of various illnesses, including neurodegenerative diseases such as Alzheimer’s. Takaine et al. provide a possible cause for why proteins aggregate in these diseases, which may be worth further study.
Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators
Adenosine 5'-triphosphate (ATP) is the major energy currency of cells and is involved in many cellular processes. However, there is no method for real-time monitoring of ATP levels inside individual living cells. To visualize ATP levels, we generated a series of fluorescence resonance energy transfer (FRET)-based indicators for ATP that were composed of the ε subunit of the bacterial FoF₁-ATP synthase sandwiched by the cyan- and yellow-fluorescent proteins. The indicators, named ATeams, had apparent dissociation constants for ATP ranging from 7.4 μM to 3.3 mM. By targeting ATeams to different subcellular compartments, we unexpectedly found that ATP levels in the mitochondrial matrix of HeLa cells are significantly lower than those of cytoplasm and nucleus. We also succeeded in measuring changes in the ATP level inside single HeLa cells after treatment with inhibitors of glycolysis and/or oxidative phosphorylation, revealing that glycolysis is the major ATP-generating pathway of the cells grown in glucose-rich medium. This was also confirmed by an experiment using oligomycin A, an inhibitor of FoF₁-ATP synthase. In addition, it was demonstrated that HeLa cells change ATP-generating pathway in response to changes of nutrition in the environment.
Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells
Genetically encoded sensors based on GFP enable the visualization of subcellular thermal changes noninvasively in intact cells. In mammals and birds, thermoregulation to conserve body temperature is vital to life. Multiple mechanisms of thermogeneration have been proposed, localized in different subcellular organelles. However, visualizing thermogenesis directly in intact organelles has been challenging. Here we have developed genetically encoded, GFP-based thermosensors (tsGFPs) that enable visualization of thermogenesis in discrete organelles in living cells. In tsGFPs, a tandem formation of coiled-coil structures of the Salmonella thermosensing protein TlpA transmits conformational changes to GFP to convert temperature changes into visible and quantifiable fluorescence changes. Specific targeting of tsGFPs enables visualization of thermogenesis in the mitochondria of brown adipocytes and the endoplasmic reticulum of myotubes. In HeLa cells, tsGFP targeted to mitochondria reveals heterogeneity in thermogenesis that correlates with the electrochemical gradient. Thus, tsGFPs are powerful tools to noninvasively assess thermogenesis in living cells.
RLR-mediated antiviral innate immunity requires oxidative phosphorylation activity
Mitochondria act as a platform for antiviral innate immunity, and the immune system depends on activation of the retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) signaling pathway via an adaptor molecule, mitochondrial antiviral signaling. We report that RLR-mediated antiviral innate immunity requires oxidative phosphorylation (OXPHOS) activity, a prominent physiologic function of mitochondria. Cells lacking mitochondrial DNA or mutant cells with respiratory defects exhibited severely impaired virus-induced induction of interferons and proinflammatory cytokines. Recovery of the OXPHOS activity in these mutants, however, re-established RLR-mediated signal transduction. Using in vivo approaches, we found that mice with OXPHOS defects were highly susceptible to viral infection and exhibited significant lung inflammation. Studies to elucidate the molecular mechanism of OXPHOS-coupled immune activity revealed that optic atrophy 1, a mediator of mitochondrial fusion, contributes to regulate the antiviral immune response. Our findings provide evidence for functional coordination between RLR-mediated antiviral innate immunity and the mitochondrial energy-generating system in mammals.
General anesthetics cause mitochondrial dysfunction and reduction of intracellular ATP levels
General anesthetics are indispensable for effective clinical care. Although, the mechanism of action of general anesthetics remains controversial, lipid bilayers and proteins have been discussed as their targets. In this study, we focused on the relationship between cellular ATP levels and general anesthetics. The ATP levels of nematodes and cultured mammalian cells were decreased by exposure to three general anesthetics: isoflurane, pentobarbital, and 1-phenoxy-2-propanol. Furthermore, these general anesthetics abolished mitochondrial membrane potential, resulting in the inhibition of mitochondrial ATP synthesis. These results suggest that the observed decrease of cellular ATP level is a common phenomenon of general anesthetics.
Visualization and Measurement of ATP Levels in Living Cells Replicating Hepatitis C Virus Genome RNA
Adenosine 5'-triphosphate (ATP) is the primary energy currency of all living organisms and participates in a variety of cellular processes. Although ATP requirements during viral lifecycles have been examined in a number of studies, a method by which ATP production can be monitored in real-time, and by which ATP can be quantified in individual cells and subcellular compartments, is lacking, thereby hindering studies aimed at elucidating the precise mechanisms by which viral replication energized by ATP is controlled. In this study, we investigated the fluctuation and distribution of ATP in cells during RNA replication of the hepatitis C virus (HCV), a member of the Flaviviridae family. We demonstrated that cells involved in viral RNA replication actively consumed ATP, thereby reducing cytoplasmic ATP levels. Subsequently, a method to measure ATP levels at putative subcellular sites of HCV RNA replication in living cells was developed by introducing a recently-established Förster resonance energy transfer (FRET)-based ATP indicator, called ATeam, into the NS5A coding region of the HCV replicon. Using this method, we were able to observe the formation of ATP-enriched dot-like structures, which co-localize with non-structural viral proteins, within the cytoplasm of HCV-replicating cells but not in non-replicating cells. The obtained FRET signals allowed us to estimate ATP concentrations within HCV replicating cells as ∼5 mM at possible replicating sites and ∼1 mM at peripheral sites that did not appear to be involved in HCV replication. In contrast, cytoplasmic ATP levels in non-replicating Huh-7 cells were estimated as ∼2 mM. To our knowledge, this is the first study to demonstrate changes in ATP concentration within cells during replication of the HCV genome and increased ATP levels at distinct sites within replicating cells. ATeam may be a powerful tool for the study of energy metabolism during replication of the viral genome.
Single-cell dynamics of pannexin-1-facilitated programmed ATP loss during apoptosis
ATP is essential for all living cells. However, how dead cells lose ATP has not been well investigated. In this study, we developed new FRET biosensors for dual imaging of intracellular ATP level and caspase-3 activity in single apoptotic cultured human cells. We show that the cytosolic ATP level starts to decrease immediately after the activation of caspase-3, and this process is completed typically within 2 hr. The ATP decrease was facilitated by caspase-dependent cleavage of the plasma membrane channel pannexin-1, indicating that the intracellular decrease of the apoptotic cell is a ‘programmed’ process. Apoptotic cells deficient of pannexin-1 sustained the ability to produce ATP through glycolysis and to consume ATP, and did not stop wasting glucose much longer period than normal apoptotic cells. Thus, the pannexin-1 plays a role in arresting the metabolic activity of dead apoptotic cells, most likely through facilitating the loss of intracellular ATP.