Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
38 result(s) for "Imbusch, Charles D."
Sort by:
DNMT and HDAC inhibitors induce cryptic transcription start sites encoded in long terminal repeats
Christoph Plass and colleagues investigate the transcriptomic and epigenomic changes induced by treatment with inhibitors of DNMT and HDAC in cancer cell lines. They observe large numbers of treatment-induced non-annotated TSSs (TINATs) encoded in long-terminal repeats that are normally repressed in most cell types. Several mechanisms of action have been proposed for DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi), primarily based on candidate-gene approaches. However, less is known about their genome-wide transcriptional and epigenomic consequences. By mapping global transcription start site (TSS) and chromatin dynamics, we observed the cryptic transcription of thousands of treatment-induced non-annotated TSSs (TINATs) following DNMTi and HDACi treatment. The resulting transcripts frequently splice into protein-coding exons and encode truncated or chimeric ORFs translated into products with predicted abnormal or immunogenic functions. TINAT transcription after DNMTi treatment coincided with DNA hypomethylation and gain of classical promoter histone marks, while HDACi specifically induced a subset of TINATs in association with H2AK9ac, H3K14ac, and H3K23ac. Despite this mechanistic difference, both inhibitors convergently induced transcription from identical sites, as we found TINATs to be encoded in solitary long terminal repeats of the ERV9/LTR12 family, which are epigenetically repressed in virtually all normal cells.
DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia
Christoph Plass, Christopher Oakes and colleagues study genome-wide DNA methylation dynamics during B cell maturation and the pathogenic role of transcription factor dysregulation in chronic lymphocytic leukemia (CLL). By comparing normal and malignant B cells, they find that tumors derive from a continuum of maturation states, which correlate with different clinical outcomes. Charting differences between tumors and normal tissue is a mainstay of cancer research. However, clonal tumor expansion from complex normal tissue architectures potentially obscures cancer-specific events, including divergent epigenetic patterns. Using whole-genome bisulfite sequencing of normal B cell subsets, we observed broad epigenetic programming of selective transcription factor binding sites coincident with the degree of B cell maturation. By comparing normal B cells to malignant B cells from 268 patients with chronic lymphocytic leukemia (CLL), we showed that tumors derive largely from a continuum of maturation states reflected in normal developmental stages. Epigenetic maturation in CLL was associated with an indolent gene expression pattern and increasingly favorable clinical outcomes. We further uncovered that most previously reported tumor-specific methylation events are normally present in non-malignant B cells. Instead, we identified a potential pathogenic role for transcription factor dysregulation in CLL, where excess programming by EGR and NFAT with reduced EBF and AP-1 programming imbalances the normal B cell epigenetic program.
Bemcentinib as monotherapy and in combination with low-dose cytarabine in acute myeloid leukemia patients unfit for intensive chemotherapy: a phase 1b/2a trial
Beyond first line, the prognosis of relapsed/refractory (R/R) acute myeloid leukemia (AML) patients is poor with limited treatment options. Bemcentinib is an orally bioavailable, potent, highly selective inhibitor of AXL, a receptor tyrosine kinase associated with poor prognosis, chemotherapy resistance and decreased antitumor immune response. We report bemcentinib monotherapy and bemcentinib+low-dose cytarabine combination therapy arms from the completed BerGenBio-funded open-label Phase 1/2b trial NCT02488408 ( www.clinicaltrials.gov ), in patients unsuitable for intensive chemotherapy. The primary objective in the monotherapy arm was identification of maximum tolerated dose with secondary objectives to identify dose-limiting toxicities, safety and efficacy, and bemcentinib pharmacokinetic profile. In the combination arm, the primary objective was safety and tolerability, with efficacy and pharmacokinetics as secondary objectives. Safety and tolerability were based on standard clinical laboratory safety tests and Common Terminology Criteria for Adverse Events version 4. Bemcentinib monotherapy (32 R/R, 2 treatment-naïve AML and 2 myelodysplasia patients) was well-tolerated and a loading/maintenance dose of 400/200 mg was selected for combination treatment, comprising 30 R/R and 6 treatment-naïve AML patients. The most common grade 3/4 treatment-related adverse events were cytopenia, febrile neutropenia and asymptomatic QTcF prolongation, with no grade 5 events reported. In conclusion, bemcentinib+low-dose cytarabine was safe and well tolerated. Following first-line therapy, patients with relapsed or refractory acute myeloid leukaemia (AML) have limited therapeutic options. Here, the authors report a phase 1b/2a study investigating bemcentinib (AXL inhibitor) as monotherapy and in combination with low-dose cytarabine (LDAC) in patients with relapsed or refractory AML.
Diagnostic leukapheresis reveals distinct phenotypes of NSCLC circulating tumor cells
Background Circulating tumor cells (CTCs) hold immense promise for unraveling tumor heterogeneity and understanding treatment resistance. However, conventional methods, especially in cancers like non-small cell lung cancer (NSCLC), often yield low CTC numbers, hindering comprehensive analyses. This study addresses this limitation by employing diagnostic leukapheresis (DLA) to cancer patients, enabling the screening of larger blood volumes. To leverage DLA’s full potential, this study introduces a novel approach for CTC enrichment from DLAs. Methods DLA was applied to six advanced stage NSCLC patients. For an unbiased CTC enrichment, a two-step approach based on negative depletion of hematopoietic cells was used. Single-cell (sc) whole-transcriptome sequencing was performed, and CTCs were identified based on gene signatures and inferred copy number variations. Results Remarkably, this innovative approach led to the identification of unprecedented 3,363 CTC transcriptomes. The extensive heterogeneity among CTCs was unveiled, highlighting distinct phenotypes related to the epithelial-mesenchymal transition (EMT) axis, stemness, immune responsiveness, and metabolism. Comparison with sc transcriptomes from primary NSCLC cells revealed that CTCs encapsulate the heterogeneity of their primary counterparts while maintaining unique CTC-specific phenotypes. Conclusions In conclusion, this study pioneers a transformative method for enriching CTCs from DLA, resulting in a substantial increase in CTC numbers. This allowed the creation of the first-ever single-cell whole transcriptome in-depth characterization of the heterogeneity of over 3,300 NSCLC-CTCs. The findings not only confirm the diagnostic value of CTCs in monitoring tumor heterogeneity but also propose a CTC-specific signature that can be exploited for targeted CTC-directed therapies in the future. This comprehensive approach signifies a major leap forward, positioning CTCs as a key player in advancing our understanding of cancer dynamics and paving the way for tailored therapeutic interventions.
Rbpj expression in regulatory T cells is critical for restraining TH2 responses
The transcriptional regulator Rbpj is involved in T-helper (T H ) subset polarization, but its function in T reg cells remains unclear. Here we show that T reg -specific Rbpj deletion leads to splenomegaly and lymphadenopathy despite increased numbers of T reg cells with a polyclonal TCR repertoire. A specific defect of Rbpj-deficient T reg cells in controlling T H 2 polarization and B cell responses is observed, leading to the spontaneous formation of germinal centers and a T H 2-associated immunoglobulin class switch. The observed phenotype is environment-dependent and can be induced by infection with parasitic nematodes. Rbpj-deficient T reg cells adopt open chromatin landscapes and gene expression profiles reminiscent of tissue-derived T H 2-polarized T reg cells, with a prevailing signature of the transcription factor Gata-3. Taken together, our study suggests that T reg cells require Rbpj to specifically restrain T H 2 responses, including their own excessive T H 2-like differentiation potential. Transcriptional regulator Rbpj is involved in T-helper subset differentiation. Here the authors show that expression of Rbpj in regulatory T cells is required to both regulate T H 2 responses and regulate T reg T H 2 differentiation potential.
Multiple myeloma long-term survivors exhibit sustained immune alterations decades after first-line therapy
The long-term consequences of cancer and its therapy on the patients’ immune system years after cancer-free survival remain poorly understood. Here, we present an in-depth characterization of the bone marrow immune ecosystem of multiple myeloma long-term survivors, from initial diagnosis up to 17 years following a single therapy line and cancer-free survival. Using comparative single-cell analyses combined with molecular, genomic, and functional approaches, we demonstrate that multiple myeloma long-term survivors exhibit pronounced alterations in their bone marrow microenvironment associated with impaired immunity. These immunological alterations were frequently linked to an inflammatory immune circuit fueled by the long-term persistence or resurgence of residual myeloma cells. Notably, even in the complete absence of any detectable residual disease for decades, sustained changes in the immune system were observed, suggesting an irreversible ‘immunological scarring’ caused by the initial exposure to the cancer and therapy. Collectively, our study provides key insights into the molecular and cellular bone marrow ecosystem of long-term survivors of multiple myeloma, revealing both reversible and irreversible alterations in the immune compartment. Understanding the immunological underpinnings of long-term survival in cancer is of high interest. Here, authors dissect the immune parameters of multiple myeloma long-term survivors following a single line of therapy longitudinally, and find sustained changes, including inflammation and impaired immune function.
Identifying similar populations across independent single cell studies without data integration
Abstract Supervised and unsupervised methods have emerged to address the complexity of single cell data analysis in the context of large pools of independent studies. Here, we present ClusterFoldSimilarity (CFS), a novel statistical method design to quantify the similarity between cell groups across any number of independent datasets, without the need for data correction or integration. By bypassing these processes, CFS avoids the introduction of artifacts and loss of information, offering a simple, efficient, and scalable solution. This method match groups of cells that exhibit conserved phenotypes across datasets, including different tissues and species, and in a multimodal scenario, including single-cell RNA-Seq, ATAC-Seq, single-cell proteomics, or, more broadly, data exhibiting differential abundance effects among groups of cells. Additionally, CFS performs feature selection, obtaining cross-dataset markers of the similar phenotypes observed, providing an inherent interpretability of relationships between cell populations. To showcase the effectiveness of our methodology, we generated single-nuclei RNA-Seq data from the motor cortex and spinal cord of adult mice. By using CFS, we identified three distinct sub-populations of astrocytes conserved on both tissues. CFS includes various visualization methods for the interpretation of the similarity scores and similar cell populations.
Lysine-specific demethylase 1 regulates hematopoietic stem cell expansion and myeloid cell differentiation
The lysine-specific demethylase 1 (LSD1) regulates hematopoietic stem cell differentiation and has been identified as a therapeutic target in hematological disorders. LSD1 demethylates mono and dimethylated histones 3 at lysine 4 and 9. In addition, it acts as a scaffold for the formation of chromatin-modifying complexes that regulates the transcription of myeloid-lineage-specific genes in complex with GFI1, a transcriptional repressor. While both enzymatic and non-enzymatic functions of LSD1 have been well defined, the relative importance of these two functions in hematopoiesis remains incompletely understood. Here, we investigated the contribution of enzymatic and non-enzymatic functions of LSD1 to myelopoiesis. We show that myeloid differentiation is independent of the enzymatic functions of LSD1 but requires the non-enzymatic, scaffolding function, which directs GFI1 binding to target sequences. In the absence of the LSD1 protein, GFI1 DNA binding is diminished, and myeloid cell differentiation arrests at an immature, myelomonocytic-like cell stage, which overexpresses Prtn3 . We provide functional data implicating Prtn3 as an effector of the stem cell expansion and myeloid maturation block caused by the loss of LSD1.
Deconvolution of sarcoma methylomes reveals varying degrees of immune cell infiltrates with association to genomic aberrations
Background Soft-tissue sarcomas (STS) are a heterogeneous group of mesenchymal tumors for which response to immunotherapies is not well established. Therefore, it is important to risk-stratify and identify STS patients who will most likely benefit from these treatments. Results To reveal shared and distinct methylation signatures present in STS, we performed unsupervised deconvolution of DNA methylation data from the TCGA sarcoma and an independent validation cohort. We showed that leiomyosarcoma can be subclassified into three distinct methylation groups. More importantly, we identified a component associated with tumor-infiltrating leukocytes, which suggests varying degrees of immune cell infiltration in STS subtypes and an association with prognosis. We further investigated the genomic alterations that may influence tumor infiltration by leukocytes including RB1 loss in undifferentiated pleomorphic sarcomas and ELK3 amplification in dedifferentiated liposarcomas. Conclusions In summary, we have leveraged unsupervised methylation-based deconvolution to characterize the immune compartment and molecularly stratify subtypes in STS, which may benefit precision medicine in the future.