Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
21 result(s) for "Imsland, Freyja"
Sort by:
Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice
A premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses, and the Dmrt3 transcription factor is critical in the development of a coordinated locomotor network in mice, suggesting that it has an important role in configuring the spinal circuits that control stride. Gait keeper: a single mutation gives horses pace Some horses — notably the harness-racing American Standardbred and the all-terrain Icelandic breed — have the ability to perform extra gaits. All horses can walk, trot, canter and gallop, but some can also 'pace' — moving the two legs on the same side of the body in unison — and/or perform other novel ambling gaits. A genome-wide association analysis of Icelandic horses has identified linkage between a premature stop codon in the DMRT3 gene and the ability to perform alternative gaits. Functional studies in mice show that Dmrt3 is expressed in a subset of spinal cord neurons that are crucial for the normal development of a coordinated locomotor network that controlling limb movements. Dmrt3 may therefore have a key role in configuring the spinal circuits that control stride in vertebrates. In the domestic horses, the DMRT3 mutation has had a major impact on the creatures' diversification, because the altered gait characteristics of a number of breeds apparently require this mutation. Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement 1 . These networks produce left–right alternation of limbs as well as coordinated activation of flexor and extensor muscles 2 . Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favourable effect on harness racing performance. Examination of wild-type and Dmrt3 -null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation.
Copy Number Variation in Intron 1 of SOX5 Causes the Pea-comb Phenotype in Chickens
Pea-comb is a dominant mutation in chickens that drastically reduces the size of the comb and wattles. It is an adaptive trait in cold climates as it reduces heat loss and makes the chicken less susceptible to frost lesions. Here we report that Pea-comb is caused by a massive amplification of a duplicated sequence located near evolutionary conserved non-coding sequences in intron 1 of the gene encoding the SOX5 transcription factor. This must be the causative mutation since all other polymorphisms associated with the Pea-comb allele were excluded by genetic analysis. SOX5 controls cell fate and differentiation and is essential for skeletal development, chondrocyte differentiation, and extracellular matrix production. Immunostaining in early embryos demonstrated that Pea-comb is associated with ectopic expression of SOX5 in mesenchymal cells located just beneath the surface ectoderm where the comb and wattles will subsequently develop. The results imply that the duplication expansion interferes with the regulation of SOX5 expression during the differentiation of cells crucial for the development of comb and wattles. The study provides novel insight into the nature of mutations that contribute to phenotypic evolution and is the first description of a spontaneous and fully viable mutation in this developmentally important gene.
The Rose-comb Mutation in Chickens Constitutes a Structural Rearrangement Causing Both Altered Comb Morphology and Defective Sperm Motility
Rose-comb, a classical monogenic trait of chickens, is characterized by a drastically altered comb morphology compared to the single-combed wild-type. Here we show that Rose-comb is caused by a 7.4 Mb inversion on chromosome 7 and that a second Rose-comb allele arose by unequal crossing over between a Rose-comb and wild-type chromosome. The comb phenotype is caused by the relocalization of the MNR2 homeodomain protein gene leading to transient ectopic expression of MNR2 during comb development. We also provide a molecular explanation for the first example of epistatic interaction reported by Bateson and Punnett 104 years ago, namely that walnut-comb is caused by the combined effects of the Rose-comb and Pea-comb alleles. Transient ectopic expression of MNR2 and SOX5 (causing the Pea-comb phenotype) occurs in the same population of mesenchymal cells and with at least partially overlapping expression in individual cells in the comb primordium. Rose-comb has pleiotropic effects, as homozygosity in males has been associated with poor sperm motility. We postulate that this is caused by the disruption of the CCDC108 gene located at one of the inversion breakpoints. CCDC108 is a poorly characterized protein, but it contains a MSP (major sperm protein) domain and is expressed in testis. The study illustrates several characteristic features of the genetic diversity present in domestic animals, including the evolution of alleles by two or more consecutive mutations and the fact that structural changes have contributed to fast phenotypic evolution.
The Crest Phenotype in Chicken Is Associated with Ectopic Expression of HOXC8 in Cranial Skin
The Crest phenotype is characterised by a tuft of elongated feathers atop the head. A similar phenotype is also seen in several wild bird species. Crest shows an autosomal incompletely dominant mode of inheritance and is associated with cerebral hernia. Here we show, using linkage analysis and genome-wide association, that Crest is located on the E22C19W28 linkage group and that it shows complete association to the HOXC-cluster on this chromosome. Expression analysis of tissues from Crested and non-crested chickens, representing 26 different breeds, revealed that HOXC8, but not HOXC12 or HOXC13, showed ectopic expression in cranial skin during embryonic development. We propose that Crest is caused by a cis-acting regulatory mutation underlying the ectopic expression of HOXC8. However, the identification of the causative mutation(s) has to await until a method becomes available for assembling this chromosomal region. Crest is unfortunately located in a genomic region that has so far defied all attempts to establish a contiguous sequence.
Copy number expansion of the STX17 duplication in melanoma tissue from Grey horses
Background Greying with age in horses is an autosomal dominant trait, associated with loss of hair pigmentation, melanoma and vitiligo-like depigmentation. We recently identified a 4.6 kb duplication in STX17 to be associated with the phenotype. The aims of this study were to investigate if the duplication in Grey horses shows copy number variation and to exclude that any other polymorphism is uniquely associated with the Grey mutation. Results We found little evidence for copy number expansion of the duplicated sequence in blood DNA from Grey horses. In contrast, clear evidence for copy number expansions was indicated in five out of eight tested melanoma tissues or melanoma cell lines. A tendency of a higher copy number in aggressive tumours was also found. Massively parallel resequencing of the ~350 kb Grey haplotype did not reveal any additional mutations perfectly associated with the phenotype, confirming the duplication as the true causative mutation. We identified three SNP alleles that were present in a subset of Grey haplotypes within the 350 kb region that shows complete linkage disequilibrium with the causative mutation. Thus, these three nucleotide substitutions must have occurred subsequent to the duplication, consistent with our interpretation that the Grey mutation arose more than 2,000 years before present. Conclusions These results suggest that the mutation acts as a melanoma-driving regulatory element. The elucidation of the mechanistic features of the duplication will be of considerable interest for the characterization of these horse melanomas as well as for the field of human melanoma research.
Sonic Hedgehog-Signalling Patterns the Developing Chicken Comb as Revealed by Exploration of the Pea-comb Mutation
The genetic basis and mechanisms behind the morphological variation observed throughout the animal kingdom is still relatively unknown. In the present work we have focused on the establishment of the chicken comb-morphology by exploring the Pea-comb mutant. The wild-type single-comb is reduced in size and distorted in the Pea-comb mutant. Pea-comb is formed by a lateral expansion of the central comb anlage into three ridges and is caused by a mutation in SOX5, which induces ectopic expression of the SOX5 transcription factor in mesenchyme under the developing comb. Analysis of differential gene expression identified decreased Sonic hedgehog (SHH) receptor expression in Pea-comb mesenchyme. By experimentally blocking SHH with cyclopamine, the wild-type single-comb was transformed into a Pea-comb-like phenotype. The results show that the patterning of the chicken comb is under the control of SHH and suggest that ectopic SOX5 expression in the Pea-comb change the response of mesenchyme to SHH signalling with altered comb morphogenesis as a result. A role for the mesenchyme during comb morphogenesis is further supported by the recent finding that another comb-mutant (Rose-comb), is caused by ectopic expression of a transcription factor in comb mesenchyme. The present study does not only give knowledge about how the chicken comb is formed, it also adds to our understanding how mutations or genetic polymorphisms may contribute to inherited variations in the human face.
Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation that underlies Dun camouflage color in horses
Leif Andersson, Gregory Barsh and colleagues show that Dun camouflage color in horses is due to TBX3 expression in hair follicles, which causes asymmetric distribution of hair follicle melanocytes and reduced pigment deposition. They find that most domestic horses are more intensely pigmented (non-dun) owing to regulatory mutations impairing TBX3 expression in the hair follicle. Dun is a wild-type coat color in horses characterized by pigment dilution with a striking pattern of dark areas termed primitive markings. Here we show that pigment dilution in Dun horses is due to radially asymmetric deposition of pigment in the growing hair caused by localized expression of the T-box 3 (TBX3) transcription factor in hair follicles, which in turn determines the distribution of hair follicle melanocytes. Most domestic horses are non-dun, a more intensely pigmented phenotype caused by regulatory mutations impairing TBX3 expression in the hair follicle, resulting in a more circumferential distribution of melanocytes and pigment granules in individual hairs. We identified two different alleles ( non-dun1 and non-dun2 ) causing non-dun color. non-dun2 is a recently derived allele, whereas the Dun and non-dun1 alleles are found in ancient horse DNA, demonstrating that this polymorphism predates horse domestication. These findings uncover a new developmental role for T-box genes and new aspects of hair follicle biology and pigmentation.
Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation underlying Dun camouflage colour in horses
Dun is a wild-type coat color in horses characterized by pigment dilution with a striking pattern of dark areas termed primitive markings. Here we show that pigment dilution in Dun horses is due to radially asymmetric deposition of pigment in the growing hair caused by localized expression of the T-box 3 (TBX3) transcription factor in hair follicles, which in turn determines the distribution of hair follicle melanocytes. Most domestic horses are non-dun, a more intensely pigmented phenotype caused by regulatory mutations impairing TBX3 expression in the hair follicle, resulting in a more circumferential distribution of melanocytes and pigment granules in individual hairs. We identified two different alleles (non-dun1 and non-dun2) causing non-dun color. non-dun2 is a recently derived allele, whereas the Dun and non-dun1 alleles are found in ancient horse DNA, demonstrating that this polymorphism predates horse domestication. These findings uncover a new developmental role for T-box genes and new aspects of hair follicle biology and pigmentation.
Monogenic Traits Associated With Structural Variants in Chicken and Horse Allelic and Phenotypic Diversity of Visually Appealing Traits
Domestic animals have rich phenotypic diversity that can be explored to advance our understanding of the relationship between molecular genetics and phenotypic variation. Since the advent of second generation sequencing, it has become easier to identify structural variants and associate them with phenotypic outcomes. This thesis details studies on three such variants associated with monogenic traits. The first studies on Rose-comb in the chicken were published over a century ago, seminally describing Mendelian inheritance and epistatic interaction in animals. Homozygosity for the otherwise dominant Rose-comb allele was later associated with reduced rooster fertility. We show that a 7.38 Mb inversion is causal for Rose-comb, and that two alleles exist for Rose-comb, R1 and R2. A novel genomic context for the gene MNR2 is causative for the comb phenotype, and the bisection of the gene CCDC108 is associated with fertility issues. The recombined R2 allele has intact CCDC108, and normal fertility. The dominant phenotype Greying with Age in horses was previously associated with an intronic duplication in STX17. By utilising second generation sequencing we have examined the genomic region surrounding the duplication in detail, and excluded all other discovered variants as causative for Grey. Dun is the ancestral coat colour of equids, where the individual is mostly pale in colour, but carries intensely pigmented primitive markings, most notably a dorsal stripe. Dun is a dominant trait, and yet most domestic horses are non-dun in colour and intensely pigmented. We show that Dun colour is established by radially asymmetric expression of the transcription factor TBX3 in hair follicles. This results in a microscopic spotting phenotype on the level of the individual hair, giving the impression of pigment dilution. Non-dun colour is caused by two different alleles, non-dun1 and non-dun2, both of which disrupt the TBX3-mediated regulation of pigmentation. Non-dun1 is associated with a SNP variant 5 kb downstream of TBX3, and non-dun2 with a 1.6 kb deletion that overlaps the non-dun1 SNP. Homozygotes for non-dun2 show a more intensely pigmented appearance than horses with one or two non-dun1 alleles. We have also shown by genotyping of ancient DNA that non-dun1 predates domestication.