Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Ingerle, Dieter"
Sort by:
Effect of iodine species on biofortification of iodine in cabbage plants cultivated in hydroponic cultures
Iodine is an essential trace element in the human diet because it is involved in the synthesis of thyroid hormones. Iodine deficiency affects over 2.2 billion people worldwide, making it a significant challenge to find plant-based sources of iodine that meet the recommended daily intake of this trace element. In this study, cabbage plants were cultivated in a hydroponic system containing iodine at concentrations ranging from 0.01 to 1.0 mg/L in the form of potassium iodide or potassium iodate. During the experiments, plant physiological parameters, biomass production, and concentration changes of iodine and selected microelements in different plant parts were investigated. In addition, the oxidation state of the accumulated iodine in root samples was determined. Results showed that iodine addition had no effect on photosynthetic efficiency and chlorophyll content. Iodide treatment did not considerably stimulate biomass production but iodate treatment increased it at concentrations less than 0.5 mg/L. Increasing iodine concentrations in the nutrient solutions increased iodine content in all plant parts; however, the iodide treatment was 2–7 times more efficient than the iodate treatment. It was concluded, that iodide addition was more favourable on the target element accumulation, however, it should be highlighted that application of this chemical form in nutrient solution decreased the concetrations of selected micoelement concentration comparing with the control plants. It was established that iodate was reduced to iodide during its uptake in cabbage roots, which means that independently from the oxidation number of iodine (+ 5, − 1) applied in the nutrient solutions, the reduced form of target element was transported to the aerial and edible tissues.
Investigation of polycapillary half lenses for quantitative confocal micro-X-ray fluorescence analysis
The use of polycapillary optics in confocal micro‐X‐ray fluorescence analysis (CMXRF) enables the destruction‐free 3D investigation of the elemental composition of samples. The energy‐dependent transmission properties, concerning intensity and spatial beam propagation of three polycapillary half lenses, which are vital for the quantitative interpretation of such CMXRF measurements, are investigated in a monochromatic confocal laboratory setup at the Atominstitut of TU Wien, and a synchrotron setup on the BAMline beamline at the BESSY II Synchrotron, Helmholtz‐Zentrum‐Berlin. The empirically established results, concerning the intensity of the transmitted beam, are compared with theoretical values calculated with the polycap software package and a newly presented analytical model for the transmission function. The resulting form of the newly modelled energy‐dependent transmission function is shown to be in good agreement with Monte Carlo simulated results for the complete energy regime, as well as the empirically established results for the energy regime between 6 keV and 20 keV. An analysis of possible fabrication errors was conducted via pinhole scans showing only minor fabrication errors in two of the investigated polycapillary optics. The energy‐dependent focal spot size of the primary polycapillary was investigated in the laboratory via the channel‐wise evaluation of knife‐edge scans. Experimental results are compared with data given by the manufacturer as well as geometric estimations for the minimal focal spot size. Again, the resulting measurement points show a trend in agreement with geometrically estimated results and manufacturer data. A new analytical model for the transmission function of polycapillary half‐lens optics is presented. The model is compared with measurement results taken at the BAMline beamline at BESSY II and at TU Wien, as well as Monte Carlo simulations.
Refitting an X-ray diffraction system for combined GIXRF and XRR measurements
A commercial Empyrean X-ray diffractometer was adapted for combined grazing incidence X-ray fluorescence analysis (GIXRF) measurements with X-ray reflectivity (XRR) measurements. An energy-dispersive silicon drift detector was mounted and integrated in the angle-dependent data acquisition of the Empyrean. Different monochromator/X-ray optics units have been compared with the values obtained by the Atominstitut GIXRF + XRR spectrometer. Data evaluation was performed by JGIXA, a special software for combined GIXRF + XRR data fitting, developed at Atominstitut. A sample consisting of a ~50 nm nickel layer on a silicon substrate was used to compare the performance criteria (i.e. divergence and intensity) of the incident beam optics. An Empyrean X-ray diffractometer was successfully refitted to measure both GIXRF and XRR data.