Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
2 result(s) for "Iossifidis, Dimitri"
Sort by:
Intelligent Tools to Monitor, Control and Predict Wastewater Reclamation and Reuse
Contemporary wastewater reclamation units entail several diverse treatment and extraction processes, with a multitude of monitored quality characteristics, controlled by a variety of key operational parameters directly affecting the efficiency of treatment. The conventional optimization of this highly complex system is time- and energy- consuming, frequently relying on intuitive decision making by operators, and does not predict or forecast efficiency changes and system maintenance. In this paper, we introduce intelligent solutions to enhance the operational control of the unit with minimal human intervention and to develop an AI-powered DSS that is installed atop the sensors of a water treatment module. The DSS uses an expert model, both to assess the quality of water and to offer suggestions based on current values and future trends. More specifically, the quality of the produced water was successfully visualized, assessed and rated, based on a set of input operational variables (pH, TOC for this case), while future values of monitored sensors were forecasted. Additionally, monitoring services of the DSS were able to identify unexpected events and to generate alerts in the case of observed violation of operational limits, as well as to implement changes (automatic responses) to operational parameters so as to reestablish normal operating conditions and to avoid such events in the future. Up to now, the DSS suggestion and forecasting services have proven to be adequately accurate. Though data are still being collected from early adopters, the solution is expected to provide a complete water treatment solution that can be adopted by a vast range of parties.