Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
92 result(s) for "Ippolito, James"
Sort by:
How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar
We synthesized 20 years of research to explain the interrelated processes that determine soil and plant responses to biochar. The properties of biochar and its effects within agricultural ecosystems largely depend on feedstock and pyrolysis conditions. We describe three stages of reactions of biochar in soil: dissolution (1–3 weeks); reactive surface development (1–6 months); and aging (beyond 6 months). As biochar ages, it is incorporated into soil aggregates, protecting the biochar carbon and promoting the stabilization of rhizodeposits and microbial products. Biochar carbon persists in soil for hundreds to thousands of years. By increasing pH, porosity, and water availability, biochars can create favorable conditions for root development and microbial functions. Biochars can catalyze biotic and abiotic reactions, particularly in the rhizosphere, that increase nutrient supply and uptake by plants, reduce phytotoxins, stimulate plant development, and increase resilience to disease and environmental stressors. Meta‐analyses found that, on average, biochars increase P availability by a factor of 4.6; decrease plant tissue concentration of heavy metals by 17%–39%; build soil organic carbon through negative priming by 3.8% (range −21% to +20%); and reduce non‐CO2 greenhouse gas emissions from soil by 12%–50%. Meta‐analyses show average crop yield increases of 10%–42% with biochar addition, with greatest increases in low‐nutrient P‐sorbing acidic soils (common in the tropics), and in sandy soils in drylands due to increase in nutrient retention and water holding capacity. Studies report a wide range of plant responses to biochars due to the diversity of biochars and contexts in which biochars have been applied. Crop yields increase strongly if site‐specific soil constraints and nutrient and water limitations are mitigated by appropriate biochar formulations. Biochars can be tailored to address site constraints through feedstock selection, by modifying pyrolysis conditions, through pre‐ or post‐production treatments, or co‐application with organic or mineral fertilizers. We demonstrate how, when used wisely, biochar mitigates climate change and supports food security and the circular economy. Plant responses to biochar are driven by interrelated biotic and abiotic processes. Biochar properties depend on the feedstock, pyrolysis conditions, and formulation, explaining the variation in responses to biochars. Through its persistence, negative priming effect, and capacity to build soil organic carbon and reduce N2O and CH4 emissions from soil, biochar contributes to climate change mitigation. By improving physical, chemical, and biological soil properties, particularly in the rhizosphere, biochars can stimulate plant growth and increase resilience to disease and environmental stressors. Biochars increase crop yields on average by 10%–42%, with greatest response in acidic tropical soils and sandy dryland soils.
Soil fertility interactions with Sinorhizobium-legume symbiosis in a simulated Martian regolith; effects on nitrogen content and plant health
Due to increasing population growth and declining arable land on Earth, astroagriculture will be vital to terraform Martian regolith for settlement. Nodulating plants and their N-fixing symbionts may play a role in increasing Martian soil fertility. On Earth, clover ( Melilotus officinalis ) forms a symbiotic relationship with the N-fixing bacteria Sinorhizobium meliloti ; clover has been previously grown in simulated regolith yet without bacterial inoculation. In this study, we inoculated clover with S . meliloti grown in potting soil and regolith to test the hypothesis that plants grown in regolith can form the same symbiotic associations as in soils and to determine if greater plant biomass occurs in the presence of S . meliloti regardless of growth media. We also examined soil NH 4 concentrations to evaluate soil augmentation properties of nodulating plants and symbionts. Greater biomass occurred in inoculated compared to uninoculated groups; the inoculated average biomass in potting mix and regolith (2.23 and 0.29 g, respectively) was greater than the uninoculated group (0.11 and 0.01 g, respectively). However, no significant differences existed in NH 4 composition between potting mix and regolith simulant. Linear regression analysis results showed that: i) symbiotic plant-bacteria relationships differed between regolith and potting mix, with plant biomass positively correlated to regolith-bacteria interactions; and, ii) NH 4 production was limited to plant uptake yet the relationships in regolith and potting mix were similar. It is promising that plant-legume symbiosis is a possibility for Martian soil colonization.
Environmental benefits of biochar
Understanding and improving environmental quality by reducing soil nutrient leaching losses, reducing bioavailability of environmental contaminants, sequestering C, reducing greenhouse gas emissions, and enhancing crop productivity in highly weathered or degraded soils, has been the goal of agroecosystem researchers and producers for years. Biochar, produced by pyrolysis of biomass, may help attain these goals. The desire to advance understanding of the environmental and agronomic implication of biochar utilization led to the organization of the 2010 American Society of Agronomy-Soil Science Society of America Environmental Quality Division session titled “Biochar Effects on the Environment and Agricultural Productivity.” This specialized session and sessions from other biochar conferences, such as the 2010 U.S. Biochar Initiative and the Biochar Symposium 2010 are the sources for this special manuscript collection. Individual contributions address improvement of the biochar knowledge base, current information gaps, and future biochar research needs. The prospect of biochar utilization is promising, as biochars may be customized for specific environmental applications.
Biochar: A synthesis of its agronomic impact beyond carbon sequestration
Biochar has been recently heralded as an amendment to revitalize degraded soils, improve soil carbon sequestration, increase agronomic productivity and enter into future carbon trading markets. However, scientific and economic technicalities may limit the ability of biochar to consistently deliver on these expectations. Past research has demonstrated that biochar is part of the black carbon continuum with variable properties, due to the net result of production (e.g., feedstock and pyrolysis conditions) and post-production factors (storage or activation). Therefore, biochar is not a single entity, but rather spans a wide range of black carbon forms. Biochar is black carbon, but not all black carbon is biochar. Agronomic benefits arising from biochar additions to degraded soils have been emphasized, but negligible and negative agronomic effects have also been reported. Fifty percent of the reviewed studies reported yield increases following black carbon or biochar additions, with the remainder of the studies reporting alarming decreases to no significant differences. Hardwood biochar (black carbon) produced by traditional methods (kilns or soil pits) possessed the most consistent yield increases when added to soils. The universality of this conclusion requires further evaluation due to the highly skewed feedstock preferences within existing studies. With global population expanding while the amount of arable land remains limited, restoring soil quality to nonproductive soils could be a vital key to meeting future global food production, food security and energy supplies; biochar may play a role in this endeavor. Biochar economics are often marginally viable and are tightly tied to the assumed duration of agronomic benefits. Further research is needed to determine the specific conditions under which biochar can provide real economic and agronomic benefits and to elucidate the fundamental mechanisms responsible for these benefits.
Biochar and Manure Effects on Net Nitrogen Mineralization and Greenhouse Gas Emissions from Calcareous Soil under Corn
Few multiyear field studies have examined the impacts of a one‐time biochar application on net N mineralization and greenhouse gas emissions in an irrigated, calcareous soil; yet this use of biochar is hypothesized as a means of sequestering atmospheric CO2 and improving soil quality. We fall‐applied four treatments: stockpiled dairy manure (42 Mg ha−1 dry wt.), hardwood‐derived biochar (22.4 Mg ha−1), combined biochar and manure, and no amendments (control). Nitrogen fertilizer was applied in all plots and years based on treatment's preseason soil test N and crop requirements and accounting for estimated N mineralized from added manure. From 2009 to 2011, we measured greenhouse gas fluxes using vented chambers, net N mineralization using buried bags, corn (Zea mays L.) yield, and N uptake, and in a succeeding year, root and shoot biomass and biomass C and N concentrations. Both amendments produced persistent soil effects. Manure increased seasonal and 3‐yr cumulative net N mineralization, root biomass, and root/shoot ratio 1.6‐fold, CO2–C gas flux 1.2‐fold, and reduced the soil NH4/NO3 ratio 58% relative to no‐manure treatments. When compared with a class comprising all other treatments, biochar‐only produced 33% less cumulative net N mineralization, 20% less CO2–C, and 50% less N2O‐N gas emissions, and increased the soil NH4/NO3 ratio 1.8‐fold, indicating that biochar impaired nitrification and N immobilization processes. The multi‐year nature of biochar's influence implies that a long‐term driver is involved, possibly related to biochar's enduring porosity and surface chemistry characteristics. While the biochar‐only treatment demonstrated a potential to increase corn yields and minimize CO2–C and N2O‐N gas emissions in these calcareous soils, biochar also caused decreased corn yields under conditions in which NH4–N dominated the soil inorganic N pool. Combining biochar with manure more effectively utilized the two soil amendments, as it eliminated potential yield reductions caused by biochar and maximized manure net N mineralization potential.
Tomato domestication rather than subsequent breeding events reduces microbial associations related to phosphorus recovery
Legacy phosphorus (P) is a reservoir of sparingly available P, and its recovery could enhance sustainable use of nonrenewable mineral fertilizers. Domestication has affected P acquisition, but it is unknown if subsequent breeding efforts, like the Green Revolution (GR), had a similar effect. We examined how domestication and breeding events altered P acquisition by growing wild, traditional (pre-GR), and modern (post-GR) tomato in soil with legacy P but low bioavailable P. Wild tomatoes, particularly accession LA0716 ( Solanum pennellii ), heavily cultured rhizosphere P solubilizers, suggesting reliance on microbial associations to acquire P. Wild tomato also had a greater abundance of other putatively beneficial bacteria, including those that produce chelating agents and antibiotic compounds. Although wild tomatoes had a high abundance of these P solubilizers, they had lower relative biomass and greater P stress factor than traditional or modern tomato. Compared to wild tomato, domesticated tomato was more tolerant to P deficiency, and both cultivated groups had a similar rhizosphere bacterial community composition. Ultimately, this study suggests that while domestication changed tomato P recovery by reducing microbial associations, subsequent breeding processes have not further impacted microbial P acquisition mechanisms. Selecting microbial P-related traits that diminished with domestication may therefore increase legacy P solubilization.
Fermentation affects heavy metal bioaccessibility in Chinese mantou
Effect of different fermentation methods on heavy metal bioaccessibilities in wheat flour is undetermined. In this work, gastric and gastrointestinal heavy metal bioaccessibility in wheat flour products (control-wheat dough, T1-mantou made with normally fermented dough, T2-mantou made with over-fermented dough and T3-mantou made with over-fermented dough + Na 2 CO 3 ) made from two wheat flour samples (NX and QD) was assessed via a modified physiologically-based extraction test. Cadmium, Zn and Mn bioaccessibility in the gastric phase (GP) was greater than in the gastrointestinal phase (GIP), yet the opposite was observed for Cu ( p  < 0.05). Lead bioaccessibility in the GIP of the QD sample was 1.37-4.08 times greater than that in the GP, while only the control had greater bioaccessibility in the GIP than that in the GP ( p  < 0.05) for the NX sample. Treatments T2 and T3 had greater Cd, Cu, Zn and Mn bioaccessibilities than the control and T1 in the GP ( p  < 0.05). In the GIP, however, only T3 had greater Mn bioaccessibility than the control for the NX sample. Enhanced degradation of the heavy metal-phytate following over-fermentation may have led to greater heavy metal bioaccessibility. Results should help food processors reduce human absorption of excessive heavy metals present in wheat flour foods.
Metal contamination in soils and windowsill dusts: implication of multiple sources on dust metal accumulation within a city affected by Pb smelting
The accumulation of total Pb, Cd, Cu, and Zn in soils (0–5 cm) and windowsill dust fractions (45–125, 10–45, and < 10 μm), and soil pollution indices (PI), were investigated in a long-term (~ 70 years) Pb smelter area and in the nearby urban city of Jiyuan, China. Principal component analysis (PCA) was utilized to identify metal contamination sources. Results showed that mean soil Pb, Cd, Cu, and Zn concentrations in the smelter area were 803, 13.8, 118, and 323 mg kg −1 , while those of the urban area were 270, 7.95, 51.6, and 244 mg kg −1 , respectively. Lead and Cd had greater soil PI than Cu and Zn. Lead concentrations in the 45–125, 10–45, and < 10-μm urban dust fractions ranged from 197.1 to 1953 (mean 1020), 202–3962 (2407), and 51.1–1258 (310.7) mg kg −1 , while Cd concentrations ranged from 11.1 to 111 (49.2), 10.4–159 (64.3) and 21.5–131 (60.0) mg kg −1 , respectively. Excessive Zn concentrations (5000–22,000 mg kg −1 ) in some urban dust samples were found at two sampling sites, while Zn concentrations were < 2600 mg kg −1 in all other samples. Based on PCA results, metal accumulation near the Pb smelter was dominated by smelting activities. The PCA results further suggested that mass vehicular transportation modes may be an important source of metals such as Cu and Zn in the urban area. Certain samples in both sub-areas had unsafe potential non-carcinogenic risks of Pb for children. These findings suggest that reducing environmentally relevant metal concentrations in this, and similar areas, will likely require a multi-faceted approach.
Tracking Soil Health Changes in a Management-Intensive Grazing Agroecosystem
Management-intensive Grazing (MiG) has been proposed to sustainably intensify agroecosystems through careful management of livestock rotations on pastureland. However, there is little research on the soil health impacts of transitioning from irrigated cropland to irrigated MiG pasture with continuous livestock rotation. We analyzed ten soil health indicators using the Soil Management Assessment Framework (SMAF) to identify changes in nutrient status and soil physical, biological, and chemical health five to six years after converting irrigated cropland to irrigated pastureland under MiG. Significant improvements in biological soil health indicators and significant degradation in bulk density, a physical soil health indicator, were observed. Removal of tillage and increased organic matter inputs may have led to increases in β-glucosidase, microbial biomass carbon, and potentially mineralizable nitrogen, all of which are biological indicators of soil health. Conversely, trampling by grazing cattle has led to increased bulk density and, thus, a reduction in soil physical health. Nutrient status was relatively stable, with combined manure and fertilizer inputs leading to stabilized plant-available phosphorous (P) and increased potassium (K) soil concentrations. Although mixed effects on soil health were present, overall soil health did increase, and the MiG system appeared to have greater overall soil health as compared to results generated four to five years earlier. When utilizing MiG in irrigated pastures, balancing the deleterious effects of soil compaction with grazing needs to be considered to maintain long-term soil health.
Long-Term Biosolids Applications to Overgrazed Rangelands Improve Soil Health
Overgrazed rangelands can lead to soil degradation, yet long-term land application of organic amendments (i.e., biosolids) may play a pivotal role in improving degraded rangelands in terms of soil health. However, the long-term effects on soil health properties in response to single or repeated, low to excessive biosolids applications, on semi-arid, overgrazed grasslands have not been quantified. Using the Soil Management Assessment Framework (SMAF), soil physical, biological, chemical, nutrient, and overall soil health indices between biosolids applications (0, 2.5, 5, 10, 21, or 30 Mg ha−1) and application time (single: 1991, repeated: 2002) were determined. Results showed no significant changes in soil physical and nutrient health indices. However, the chemical soil health index was greater when biosolids were applied at rates <30 Mg ha−1 and within the single compared to repeated applications. The biological soil health index was positively affected by increasing biosolids application rates, was overall greater in the repeated as compared to the single application, and was maximized at 30 Mg ha−1. The overall soil health index was maximized at rates <30 Mg ha−1. When all indices were combined, and considering past plant community findings at this site, overall soil health appeared optimized at a biosolids application rate of ~10 Mg ha−1. The use of soil health tools can help determine a targeted organic amendment application rate to overgrazed rangelands so the material provides maximum benefits to soils, plants, animals, and the environment.