Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "Irga, Peter"
Sort by:
Can Green Walls Reduce Outdoor Ambient Particulate Matter, Noise Pollution and Temperature?
Green walls have previously demonstrated the capacity to reduce particulate matter (PM), noise pollution, and temperature conditions in manipulative experiments and computational models. There is, however, minimal evidence that green walls can influence ambient environmental conditions, especially taking into account the variable environmental conditions encountered in situ. The aim of this paper was to determine if green walls have a quantitative effect on ambient air quality in an urban environment. Ambient PM, noise, and temperature were recorded at 12 green wall and adjacent reference wall locations across a dense urban centre, over a 6-month period. The results indicated that PM levels and temperature did not significantly differ between the green wall and reference wall sites. Ambient noise at the green wall sites, however, was significantly lower than at the reference wall locations. It is suggested that mechanically assisted, or ‘active’ green wall systems may have a higher PM and temperature reduction capacity, and if so, they will be more valuable for installation in situ compared to standard passive systems, although this will require further research.
Effects of indoor plants on CO2 concentration, indoor air temperature and relative humidity in office buildings
This experimental study investigates the influence of indoor plants on three aspects of air quality in office spaces: relative humidity, indoor air temperature, and carbon dioxide concentration. Employing a Latin square design, we rotated three different treatments across three offices over six time periods. These treatments included a control (no plants), a low-volume treatment (five plants), and a high-volume treatment (eighteen plants) of Nephrolepis exaltata (Boston fern). Air quality parameters were continuously monitored at five-minute intervals using Trace Gas Analyzers. Generalised linear mixed modelling (GLMM) was employed to examine the effect of each treatment on relative humidity, indoor air temperature and CO 2 concentration. We observed a significant positive correlation between the number of indoor plants and relative humidity levels. In offices without any plants, the median relative humidity was 29.1%. This increased to 38.9% in offices with 5 plants and further to 49.2% in offices with 18 plants. However, we did not find significant associations between the number of indoor plants and indoor air temperature or corrected CO 2 concentration. Our research provides support for the use of indoor plants to increase relative humidity, which can have health benefits in dry climates, but does not provide support for using indoor plants to regulate indoor air temperatures or CO 2 concentration in office environments.
Vertical Greening Systems: A Perspective on Existing Technologies and New Design Recommendation
Vertical greening systems (VGSs) represent an emerging technology within the field of building-integrated horticulture that have been used to help counteract the global issues of urbanisation and climate change. Research and development within the field of building-integrated horticulture, despite being in the infancy stage, is steadily progressing, highlighting a broad range of achievable social, environmental, and economic benefits this sustainable development technology could provide. However, as VGS technology is relatively new, an array of different designs and technologies have been categorized collectively as VGSs, each having various performances towards the proposed and desired benefits. The purpose of this paper is to review existing VGS technologies and analyse the impact of implementation on sustainable development, and subsequently to propose a new VGS design that theoretically achieves the best possible outcomes when aiming to obtain the maximum benefits of installing a VGS. The resultant design creates new opportunities for VGS environmental amenities and maintenance, increases the scope of applications, and improves the environmental performance of the host building. The proposed design has the potential to transform VGSs beyond conventional functions of aesthetic greening to create novel ecosystems, which enhances the formation of habitats for a more diverse range of flora and fauna.
Conservation mycology in Australia and the potential role of citizen science
Fungi are undoubtedly important for ecosystem functioning; however, they have been omitted or given scant attention in most biodiversity policy documents, management plans, and formal conservation schedules throughout the world. This oversight may be due to a general lack of awareness in the scientific community and compounded by a scarcity of mycology-associated curricula at the tertiary level and a lack of mycologists in research institutions. Although molecular techniques advance the systematic cataloging of fungi and facilitate insights into fungal communities, the scarcity of professional mycologists in the environmental sciences hampers conservation efforts. Conversely, citizen science initiatives are making significant contributions to the mycology discipline by increasing awareness and extending the scope of fungal surveys. Future research by professional and amateur mycologists into the distribution of fungi and their function in ecosystems will help identify wider and more effective conservation goals. Los hongos son indudablemente importantes para el funcionamiento de un ecosistema; sin embargo, se omiten o se les brinda poca atención en la mayoría de los documentos de políticas para la biodiversidad, planes de manejo, e itinerarios formales de conservación alrededor del mundo. Esta omisión puede deberse a la falta general de conocimiento dentro de la comunidad científica en conjunto con una escasez de planes de estudio asociados a la micología en el nivel terciario y la carencia de micólogos en las instituciones de investigación. Aunque las técnicas moleculares avanzan la clasificación sistemática de los hongos y facilitan la percepción hacia las comunidades de hongos, la escasez de micólogos profesionales dentro de las ciencias ambientales obstaculizan los esfuerzos de conservación. Al contrario, las iniciativas de ciencia ciudadana están proporcionando contribuciones significativas a la disciplina de la micología al incrementar el conocimiento y extender el alcance de los censos micológicos. Las futuras investigaciones de micólogos profesionales y aficionados sobre la distribución de los hongos y su función en los ecosistemas ayudarán a identificar objetivos de conservación más amplios y más efectivos. 真菌対生态系统功能无疑起到重要作用。然而’ 在全世界大多数生物多祥性政策文件、管理方案和正式 的保护计划中,真菌都被忽略或是受到很少关注。这ー疏漏可能是由于科学界普遍缺乏认识,加之高校少有真菌 相关课程,研究机构也缺乏真菌学者。尽管分子生物学技术推动了真菌的系统编目和真菌群落的深入研究,但环 境科学领域缺少专业的真菌学者, 这阻碍了保护行动的开展。相反地,公民科学计划通过加强人们的意识和拓宽 真菌调查的范围,对真菌学做出了重要贡献。未来专业及业余真菌研究者对真菌的分布及它们在生态系统中功 能的研究,将帮助我们制定更广泛、更有效的保护目标。
The mycological social network a way forward for conservation of fungal biodiversity
Because knowledge of fungal diversity is very incomplete, it is possible that anthropogenic impacts are driving species to extinction before they have been discovered. Fungal inventories are still incomplete and do not reflect the complete diversity of this large taxon. Whilst molecular advancements are leading to an increased rate of species discovery, there is still much to be done to understand the diversity of fungi, identify rare species and establish conservation goals. Citizen science via social media could play an increasingly important role in mycological research, and its continued development should be supported and encouraged. The involvement of non-professionals in data collection helps increase public awareness, as well as extending the scope and efficiency of fungal surveys. Future academic mycological research could benefit from social media interaction and engagement with the amateur mycological community, which may accelerate the achievement of more effective conservation goals.
Does plant species selection in functional active green walls influence VOC phytoremediation efficiency?
Volatile organic compounds (VOCs) are of public concern due to their adverse health effects. Botanical air filtration is a promising technology for reducing indoor air contaminants, but the underlying mechanisms are not fully understood. This study assessed active botanical biofilters for their single-pass removal efficiency (SPRE) for benzene, ethyl acetate and ambient total volatile organic compounds (TVOCs), at concentrations of in situ relevance. Biofilters containing four plant species ( Chlorophytum orchidastrum , Nematanthus glabra , Nephrolepis cordifolia ‘duffii’ and Schefflera arboricola ) were compared to discern whether plant selection influenced VOC SPRE. Amongst all tested plant species, benzene SPREs were between 45.54 and 59.50%, with N. glabra the most efficient. The botanical biofilters removed 32.36–91.19% of ethyl acetate, with C. orchidastrum and S. arboricola recording significantly higher ethyl acetate SPREs than N. glabra and N. cordifolia . These findings thus indicate that plant type influences botanical biofilter VOC removal. It is proposed that ethyl acetate SPREs were dependent on hydrophilic adsorbent sites, with increasing root surface area, root diameter and root mass all associated with increasing ethyl acetate SPRE. The high benzene SPRE of N. glabra is likely due to the high wax content in its leaf cuticles. The SPREs for the relatively low levels of ambient TVOCs were consistent amongst plant species, providing no evidence to suggest that in situ TVOC removal is influenced by plant choice. Nonetheless, as inter-species differences do exist for some VOCs, botanical biofilters using a mixture of plants is proposed.
Fuelling phytoremediation: gasoline degradation by green wall systems—a case study
The capacity for indoor plants including green wall systems to remove specific volatile organic compounds (VOCs) is well documented in the literature; however under realistic settings, indoor occupants are exposed to a complex mixture of harmful compounds sourced from various emission sources. Gasoline vapour is one of the key sources of these emissions, with several studies demonstrating that indoor occupants in areas surrounding gasoline stations or with residentially attached garages are exposed to far higher concentrations of harmful VOCs. Here we assess the potential of a commercial small passive green wall system, commercially named the ‘LivePicture Go’ from Ambius P/L, Australia, to drawdown VOCs that comprise gasoline vapour, including total VOC (TVOC) removal and specific removal of individual speciated VOCs over time. An 8-h TVOC removal efficiency of 42.45% was achieved, along with the complete removal of eicosane, 1,2,3-trimethyl-benzene, and hexadecane. Further, the green wall also effectively reduced concentrations of a range of harmful benzene derivatives and other VOCs. These results demonstrate the potential of botanical systems to simultaneously remove a wide variety of VOCs, although future research is needed to improve upon and ensure efficiency of these systems over time and within practical applications.
The power of citizen science to advance fungal conservation
Fungal conservation is gaining momentum globally, but many challenges remain. To advance further, more data are needed on fungal diversity across space and time. Fundamental information regarding population sizes, trends, and geographic ranges is also critical to accurately assess the extinction risk of individual species. However, obtaining these data is particularly difficult for fungi due to their immense diversity, complex and problematic taxonomy, and cryptic nature. This paper explores how citizen science (CS) projects can be leveraged to advance fungal conservation efforts. We present several examples of past and ongoing CS‐based projects to record and monitor fungal diversity. These include projects that are part of broad collecting schemes, those that provide participants with targeted sampling methods, and those whereby participants collect environmental samples from which fungi can be obtained. We also examine challenges and solutions for how such projects can capture fungal diversity, estimate species absences, broaden participation, improve data curation, and translate resulting data into actionable conservation measures. Finally, we close the paper with a call for professional mycologists to engage with amateurs and local communities, presenting a framework to determine whether a given project would likely benefit from participation by citizen scientists.
Active botanical biofiltration of air pollutants using Australian native plants
Air pollutants are of public concern due to their adverse health effects. Biological air filters have shown great promise for the bioremediation of air pollutants. Different plant species have previously been shown to significantly influence pollutant removal capacities, although the number of species tested to date is small. The aims of this paper were to determine the pollutant removal capacity of different Australian native species for their effect on active biowall particulate matter, volatile organic compounds and carbon dioxide removal, and to compare removal rates with previously tested ornamental species. The single-pass removal efficiency for PM and VOCs of native planted biofilters was determined with a flow-through chamber. CO2 removal was tested by a static chamber pull down study. The results indicated that the native species were not effective for CO2 removal likely due to their high light level requirements in conjunction with substrate respiration. Additionally, the native species had lower PM removal efficiencies compared to ornamental species, with this potentially being due to the ornamental species possessing advantageous leaf traits for increased PM accumulation. Lastly, the native species were found to have similar benzene removal efficiencies to ornamental species. As such, whilst the native species showed a capacity to phytoremediate air pollutants, ornamental species have a comparatively greater capacity to do so and are more appropriate for air filtration purposes in indoor circumstances. However, as Australian native plants have structural and metabolic adaptations that enhance their ability to tolerate harsh environments, they may find use in botanical biofilters in situations where common ornamental plants may be suitable, especially in the outdoor environment.
Vertical Greening Systems: A Critical Comparison of Do-It-Yourself Designs
Due to the increasing shortage of space in urban areas, vertical greening systems (VGSs) are becoming increasingly popular as a means to provide increased urban greening using building façades. VGSs are usually installed and managed by experts due to technical complexity, however the role of local communities is becoming increasingly important through Do-It-Yourself (DIY) practices. This study aims to explore low-cost VGSs and provide design suggestions and maintenance indications to encourage the expanded use of in situ small-scale VGSs. Firstly, an exploratory review of VGS designs proposed in the scientific literature, and by commercial and community-based solutions was conducted taking DIY potential into account to define eight basic design models categorized through six structural criteria. Then, seven community garden groups were interviewed to inform a critical comparison of the eight design models. Data collected was synthesized to develop a star rating system, thus providing a quick comparative tool. The star rating system shows the performance of five relevant DIY design parameters for each VGS model. The current research may assist in the accessibility of green technologies and facilitate community-scale implementation of DIY vertical greening.