Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
110 result(s) for "Irvin, Marguerite R."
Sort by:
Genome-wide polygenic score to predict chronic kidney disease across ancestries
Chronic kidney disease (CKD) is a common complex condition associated with high morbidity and mortality. Polygenic prediction could enhance CKD screening and prevention; however, this approach has not been optimized for ancestrally diverse populations. By combining APOL1 risk genotypes with genome-wide association studies (GWAS) of kidney function, we designed, optimized and validated a genome-wide polygenic score (GPS) for CKD. The new GPS was tested in 15 independent cohorts, including 3 cohorts of European ancestry ( n  = 97,050), 6 cohorts of African ancestry ( n  = 14,544), 4 cohorts of Asian ancestry ( n  = 8,625) and 2 admixed Latinx cohorts ( n  = 3,625). We demonstrated score transferability with reproducible performance across all tested cohorts. The top 2% of the GPS was associated with nearly threefold increased risk of CKD across ancestries. In African ancestry cohorts, the APOL1 risk genotype and polygenic component of the GPS had additive effects on the risk of CKD. A new study generated and optimized a polygenic score for chronic kidney disease with reproducible performance across 15 cohorts of different ancestries, and identified potentially clinically relevant thresholds with predicted effects comparable to having a family history of the disease.
Age and sex are associated with the plasma lipidome: findings from the GOLDN study
Background Developing an understanding of the biochemistry of aging in both sexes is critical for managing disease throughout the lifespan. Lipidomic associations with age and sex have been reported, but prior studies are limited by measurements in serum rather than plasma or by participants taking lipid-lowering medications. Methods Our study included lipidomic data from 980 participants aged 18–87 years old from the Genetics of Lipid-Lowering Drugs and Diet Network (GOLDN). Participants were off lipid-lowering medications for at least 4 weeks, and signal intensities of 413 known lipid species were measured in plasma. We examined linear age and sex associations with signal intensity of (a) 413 lipid species; (b) 6 lipid classes (glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, fatty acids, and acylcarnitines); and (c) 15 lipid subclasses; as well as with the particle sizes of three lipoproteins. Results Significant age associations were identified in 4 classes, 11 subclasses, 147 species, and particle size of one lipoprotein while significant sex differences were identified in 5 classes, 12 subclasses, 248 species, and particle sizes of two lipoproteins. For many lipid species ( n  = 97), age-related associations were significantly different between males and females. Age*sex interaction effects were most prevalent among phosphatidylcholines, sphingomyelins, and triglycerides. Conclusion We identified several lipid species, subclasses, and classes that differ by age and sex; these lipid phenotypes may serve as useful biomarkers for lipid changes and associated cardiovascular risk with aging in the future. Future studies of age-related changes throughout the adult lifespan of both sexes are warranted. Trial registration ClinicalTrials.gov NCT00083369 ; May 21, 2004.
Novel risk loci encompassing genes influencing STAT3, GPCR, and oxidative stress signaling are associated with co-morbid GERD and COPD
Chronic obstructive pulmonary disease (COPD) is a leading cause of death globally. Gastroesophageal reflux disease (GERD) is a common comorbidity in COPD associated with worse pulmonary symptoms, reduced quality of life, and increased exacerbations and hospitalizations. GERD treatment in COPD is associated with a lower risk of exacerbations and mortality; however, it is not clear whether these findings can be attributed to aging populations where both diseases are likely to co-occur or reflect shared etiology. To test for the influence of common etiology in both diseases, we aimed to identify shared genetic etiology between GERD and COPD. We performed the first whole-genome sequence association analysis of comorbid GERD and COPD in 12,438 multi-ancestry participants. The co-heritability of GERD and COPD was 39.7% (h2 = 0.397, SE = 0.074) and we identified several ancestry-independent loci associated with co-morbid GERD and COPD (within LINC02493 and FRYL) known to be involved in oxidative stress and G protein-coupled receptor (GPCR) signaling mechanisms. We found several loci associated with co-morbid GERD and COPD previously associated with GERD or COPD individually, including HCG17, which plays a role in oxidative stress mechanisms. Gene set enrichment identified GPCR signaling pathways in co-morbid GERD and COPD loci. Rare variants in ZFP42, encoding key regulators of the IL6/STAT3 pathway, have been previously implicated with GI disorders and were associated with co-morbid GERD and COPD. We identified common genetic etiology for GERD in COPD which begins to provide a mechanistic foundation for the potential therapeutic utility of STAT3, oxidation, and GPCR signaling pathway modulators in both GERD and COPD.
The predominant PAR4 variant in individuals of African ancestry worsens murine and human stroke outcomes
Protease-activated receptor 4 (PAR4) (gene F2RL3) harbors a functional dimorphism, rs773902 A/G (encoding Thr120/Ala120, respectively) and is associated with greater platelet aggregation. The A allele frequency is more common in Black individuals, and Black individuals have a higher incidence of ischemic stroke than White individuals. However, it is not known whether the A allele is responsible for worse stroke outcomes. To directly test the in vivo effect of this variant on stroke, we generated mice in which F2rl3 was replaced by F2RL3, thereby expressing human PAR4 (hPAR4) with either Thr120 or Ala120. Compared with hPAR4 Ala120 mice, hPAR4 Thr120 mice had worse stroke outcomes, mediated in part by enhanced platelet activation and platelet-neutrophil interactions. Analyses of 7,620 Black subjects with 487 incident ischemic strokes demonstrated the AA genotype was a risk for incident ischemic stroke and worse functional outcomes. In humanized mice, ticagrelor with or without aspirin improved stroke outcomes in hPAR4 Ala120 mice, but not in hPAR4 Thr120 mice. P selectin blockade improved stroke outcomes and reduced platelet-neutrophil interactions in hPAR4 Thr120 mice. Our results may explain some of the racial disparity in stroke and support the need for studies of nonstandard antiplatelet therapies for patients expressing PAR4 Thr120.
Association of DNA Methylation at CPT1A Locus with Metabolic Syndrome in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) Study
In this study, we conducted an epigenome-wide association study of metabolic syndrome (MetS) among 846 participants of European descent in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN). DNA was isolated from CD4+ T cells and methylation at ~470,000 cytosine-phosphate-guanine dinucleotide (CpG) pairs was assayed using the Illumina Infinium HumanMethylation450 BeadChip. We modeled the percentage methylation at individual CpGs as a function of MetS using linear mixed models. A Bonferroni-corrected P-value of 1.1 x 10(-7) was considered significant. Methylation at two CpG sites in CPT1A on chromosome 11 was significantly associated with MetS (P for cg00574958 = 2.6x10(-14) and P for cg17058475 = 1.2x10(-9)). Significant associations were replicated in both European and African ancestry participants of the Bogalusa Heart Study. Our findings suggest that methylation in CPT1A is a promising epigenetic marker for MetS risk which could become useful as a treatment target in the future.
Telomere shortening and the transition to family caregiving in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study
Telomere length (TL) is widely studied as a possible biomarker for stress-related cellular aging and decreased longevity. There have been conflicting findings about the relationship between family caregiving stress and TL. Several initial cross-sectional studies have found associations between longer duration of caregiving or perceived stressfulness of caregiving and shortened TL, suggesting that caregiving poses grave risks to health. Previous reviews have suggested the need for longitudinal methods to investigate this topic. This study examined the association between the transition to family caregiving and change in TL across ~9 years. Data was utilized from the Caregiving Transitions Study, an ancillary study to the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study. TL was assayed using qPCR and analyzed as the telomere-to-single copy gene ratio for each participant at baseline and follow-up. General linear models examined the association between caregiving status and the change in TL for 208 incident caregivers and 205 controls, as well as associations between perceived stress and TL among caregivers. No association was found between TL change and caregiving ( p = 0.494), and fully adjusted models controlling for health and socioeconomic factors did not change the null relationship ( p = 0.305). Among caregivers, no association was found between perceived caregiving stress and change in TL ( p = 0.336). In contrast to earlier cross-sectional studies, this longitudinal, population-based study did not detect a significant relationship between the transition into a family caregiving role and changes in TL over time. Given the widespread citation of previous findings suggesting that caregiving shortens telomeres and places caregivers at risk of early mortality, these results demonstrate the potential need of a more balanced narrative about caregiving.
Increased chest CT derived bone and muscle measures capture markers of improved morbidity and mortality in COPD
Background Chronic obstructive pulmonary disease (COPD) is a disease of accelerated aging and is associated with comorbid conditions including osteoporosis and sarcopenia. These extrapulmonary conditions are highly prevalent yet frequently underdiagnosed and overlooked by pulmonologists in COPD treatment and management. There is evidence supporting a role for bone-muscle crosstalk which may compound osteoporosis and sarcopenia risk in COPD. Chest CT is commonly utilized in COPD management, and we evaluated its utility to identify low bone mineral density (BMD) and reduced pectoralis muscle area (PMA) as surrogates for osteoporosis and sarcopenia. We then tested whether BMD and PMA were associated with morbidity and mortality in COPD. Methods BMD and PMA were analyzed from chest CT scans of 8468 COPDGene participants with COPD and controls (smoking and non-smoking). Multivariable regression models tested the relationship of BMD and PMA with measures of function (6-min walk distance (6MWD), handgrip strength) and disease severity (percent emphysema and lung function). Multivariable Cox proportional hazards models were used to evaluate the relationship between sex-specific quartiles of BMD and/or PMA derived from non-smoking controls with all-cause mortality. Results COPD subjects had significantly lower BMD and PMA compared with controls. Higher BMD and PMA were associated with increased physical function and less disease severity. Participants with the highest BMD and PMA quartiles had a significantly reduced mortality risk (36% and 46%) compared to the lowest quartiles. Conclusions These findings highlight the potential for CT-derived BMD and PMA to characterize osteoporosis and sarcopenia using equipment available in the pulmonary setting.
Variant level heritability estimates of type 2 diabetes in African Americans
Type 2 diabetes (T2D) is caused by both genetic and environmental factors and is associated with an increased risk of cardiorenal complications and mortality. Though disproportionately affected by the condition, African Americans (AA) are largely underrepresented in genetic studies of T2D, and few estimates of heritability have been calculated in this race group. Using genome-wide association study (GWAS) data paired with phenotypic data from ~ 19,300 AA participants of the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, Genetics of Hypertension Associated Treatments (GenHAT) study, and the Electronic Medical Records and Genomics (eMERGE) network, we estimated narrow-sense heritability using two methods: Linkage-Disequilibrium Adjusted Kinships (LDAK) and Genome-Wide Complex Trait Analysis (GCTA). Study-level heritability estimates adjusting for age, sex, and genetic ancestry ranged from 18% to 34% across both methods. Overall, the current study narrows the expected range for T2D heritability in this race group compared to prior estimates, while providing new insight into the genetic basis of T2D in AAs for ongoing genetic discovery efforts.
Metabolic and inflammatory biomarkers are associated with epigenetic aging acceleration estimates in the GOLDN study
Background Recently, epigenetic age acceleration—or older epigenetic age in comparison to chronological age—has been robustly associated with mortality and various morbidities. However, accelerated epigenetic aging has not been widely investigated in relation to inflammatory or metabolic markers, including postprandial lipids. Methods We estimated measures of epigenetic age acceleration in 830 Caucasian participants from the Genetics Of Lipid Lowering Drugs and diet Network (GOLDN) considering two epigenetic age calculations based on differing sets of 5′-Cytosine-phosphate-guanine-3′ genomic site, derived from the Horvath and Hannum DNA methylation age calculators, respectively. GOLDN participants underwent a standardized high-fat meal challenge after fasting for at least 8 h followed by timed blood draws, the last being 6 h postmeal. We used adjusted linear mixed models to examine the association of the epigenetic age acceleration estimate with fasting and postprandial (0- and 6-h time points) low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride (TG) levels as well as five fasting inflammatory markers plus adiponectin. Results Both DNA methylation age estimates were highly correlated with chronological age ( r  > 0.90). We found that the Horvath and Hannum measures of epigenetic age acceleration were moderately correlated ( r  = 0.50). The regression models revealed that the Horvath age acceleration measure exhibited marginal associations with increased postprandial HDL ( p  = 0.05), increased postprandial total cholesterol ( p  = 0.06), and decreased soluble interleukin 2 receptor subunit alpha (IL2sRα, p  = 0.02). The Hannum measure of epigenetic age acceleration was inversely associated with fasting HDL ( p  = 0.02) and positively associated with postprandial TG ( p  = 0.02), interleukin-6 (IL6, p  = 0.007), C-reactive protein (C-reactive protein, p  = 0.0001), and tumor necrosis factor alpha (TNFα, p  = 0.0001). Overall, the observed effect sizes were small and the association of the Hannum residual with inflammatory markers was attenuated by adjustment for estimated T cell type percentages. Conclusions Our study demonstrates that epigenetic age acceleration in blood relates to inflammatory biomarkers and certain lipid classes in Caucasian individuals of the GOLDN study. Future studies should consider epigenetic age acceleration in other tissues and extend the analysis to other ethnic groups.
Alpha globin gene copy number and hypertension risk among Black Americans
Alpha globin is expressed in the endothelial cells of human resistance arteries where it binds to endothelial nitric oxide synthase and limits release of the vasodilator nitric oxide. Genomic deletion of the alpha globin gene (HBA) is common among Black Americans and could lead to increased endothelial nitric oxide signaling and reduced risk of hypertension. Community-dwelling US adults aged 45 years or older were enrolled and examined from 2003 to 2007, followed by telephone every 6 months, and reexamined from 2013 to 2016. At both visits, trained personnel performed standardized, in-home blood pressure measurements and pill bottle review. Prevalent hypertension was defined as systolic blood pressure ≥ 140mmHg or diastolic blood pressure ≥ 90mmHg or anti-hypertensive medication use. Droplet digital PCR was used to determine HBA copy number. The associations of HBA copy number with prevalent hypertension, resistant hypertension, and incident hypertension were estimated using multivariable regression. Among 9,684 Black participants, 7,439 (77%) had hypertension at baseline and 1,044 of those had treatment-resistant hypertension. 1,000 participants were not hypertensive at baseline and participated in a follow up visit; 517 (52%) developed hypertension over median 9.2 years follow-up. Increased HBA copy number was not associated with prevalent hypertension (PR = 1.00; 95%CI 0.98,1.02), resistant hypertension (PR = 0.95; 95%CI 0.86,1.05), or incident hypertension (RR = 0.96; 95%CI 0.86,1.07). There were no associations between increased HBA copy number and risk of hypertension. These findings suggest that variation in alpha globin gene copy number does not modify the risk of hypertension among Black American adults.