Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
744 result(s) for "Irwin, David J."
Sort by:
The potential of TDP-43 PET ligands for a biological diagnosis of TDP-43 proteinopathies
Candidate PET ligands targeting pathological TDP-43 aggregates are characterized by Vokali and colleagues in a series of human tissue, cell/animal model, and non-human primate experiments. Their preclinical data suggests favorable specificity and pharmacokinetic profiles of their two candidate tracers, which could translate into a disease-specific biomarker in TDP-43 proteinopathies.
SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network
Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies.SpaGCN is a spatially resolved transcriptomics data analysis tool for identifying spatial domains and spatially variable genes using graph convolutional networks.
Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis
Great heterogeneity exists in survival and the interval between onset of motor symptoms and dementia symptoms across synucleinopathies. We aimed to identify genetic and pathological markers that have the strongest association with these features of clinical heterogeneity in synucleinopathies. In this retrospective study, we examined symptom onset, and genetic and neuropathological data from a cohort of patients with Lewy body disorders with autopsy-confirmed α synucleinopathy (as of Oct 1, 2015) who were previously included in other studies from five academic institutions in five cities in the USA. We used histopathology techniques and markers to assess the burden of tau neurofibrillary tangles, neuritic plaques, α-synuclein inclusions, and other pathological changes in cortical regions. These samples were graded on an ordinal scale and genotyped for variants associated with synucleinopathies. We assessed the interval from onset of motor symptoms to onset of dementia, and overall survival in groups with varying levels of comorbid Alzheimer's disease pathology according to US National Institute on Aging–Alzheimer's Association neuropathological criteria, and used multivariate regression to control for age at death and sex. On the basis of data from 213 patients who had been followed up to autopsy and met inclusion criteria of Lewy body disorder with autopsy-confirmed α synucleinopathy, we identified 49 (23%) patients with no Alzheimer's disease neuropathology, 56 (26%) with low-level Alzheimer's disease neuropathology, 45 (21%) with intermediate-level Alzheimer's disease neuropathology, and 63 (30%) with high-level Alzheimer's disease neuropathology. As levels of Alzheimer's disease neuropathology increased, cerebral α-synuclein scores were higher, and the interval between onset of motor and dementia symptoms and disease duration was shorter (p<0·0001 for all comparisons). Multivariate regression showed independent negative associations of cerebral tau neurofibrillary tangles score with the interval between onset of motor and dementia symptoms (β −4·0, 95% CI −5·5 to −2·6; p<0·0001; R2 0·22, p<0·0001) and with survival (–2·0, −3·2 to −0·8; 0·003; 0·15, <0·0001) in models that included age at death, sex, cerebral neuritic plaque scores, cerebral α-synuclein scores, presence of cerebrovascular disease, MAPT haplotype, and APOE genotype as covariates. Alzheimer's disease neuropathology is common in synucleinopathies and confers a worse prognosis for each increasing level of neuropathological change. Cerebral neurofibrillary tangles burden, in addition to α-synuclein pathology and amyloid plaque pathology, are the strongest pathological predictors of a shorter interval between onset of motor and dementia symptoms and survival. Diagnostic criteria based on reliable biomarkers for Alzheimer's disease neuropathology in synucleinopathies should help to identify the most appropriate patients for clinical trials of emerging therapies targeting tau, amyloid-β or α synuclein, and to stratify them by level of Alzheimer's disease neuropathology. US National Institutes of Health (National Institute on Aging and National Institute of Neurological Disorders and Stroke).
A tribute to John Q. Trojanowski (1946–2022)
Am obituary for Dr. John Q. Trojanowski, who died on Feb 8, 2022 at the age of 75, is presented. Trojanowski's scientific contributions to the study of Alzheimer's disease (AD) and related neurodegenerative disorders span more than four decades. His seminal discoveries range from providing fundamental mechanistic insights into the main protein constituents of the characteristic inclusions of these disorders, leading major efforts to develop biofluid and imaging biomarkers for AD, and championing the concept of mixed pathology in aging through building an extensive brain bank of more than 2000 well-annotated and -curated patient samples that are shared throughout the world to advance research in ADRD. Trojanowskis scientific accomplishments and influence within any of these main areas alone would be considered a highly successful career as a physician-scientist; in totality, they represent a truly remarkable and unparalleled body of work.
An HDAC6-dependent surveillance mechanism suppresses tau-mediated neurodegeneration and cognitive decline
Tauopathies including Alzheimer’s disease (AD) are marked by the accumulation of aberrantly modified tau proteins. Acetylated tau, in particular, has recently been implicated in neurodegeneration and cognitive decline. HDAC6 reversibly regulates tau acetylation, but its role in tauopathy progression remains unclear. Here, we identified an HDAC6-chaperone complex that targets aberrantly modified tau. HDAC6 not only deacetylates tau but also suppresses tau hyperphosphorylation within the microtubule-binding region. In neurons and human AD brain, HDAC6 becomes co-aggregated within focal tau swellings and human AD neuritic plaques. Using mass spectrometry, we identify a novel HDAC6-regulated tau acetylation site as a disease specific marker for 3R/4R and 3R tauopathies, supporting uniquely modified tau species in different neurodegenerative disorders. Tau transgenic mice lacking HDAC6 show reduced survival characterized by accelerated tau pathology and cognitive decline. We propose that a HDAC6-dependent surveillance mechanism suppresses toxic tau accumulation, which may protect against the progression of AD and related tauopathies. HDAC6 is a tau deacetylase and acetylation of tau inhibits its function and promotes aggregation. Here the authors show that HDAC6 protects against tau accumulation in a mouse model of tauopathy.
Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology
Neurogranin (Ng) is a post-synaptic protein that previously has been shown to be a biomarker for synaptic function when measured in cerebrospinal fluid (CSF). The CSF concentration of Ng is increased in Alzheimer’s disease dementia (ADD), and even in the pre-dementia stage. In this prospective study, we used an enzyme-linked immunosorbent assay that quantifies Ng in CSF to test the performance of Ng as a marker of synaptic function. In 915 patients, CSF Ng was evaluated across several different neurodegenerative diseases. Of these 915 patients, 116 had a neuropathologically confirmed definitive diagnosis and the relation between CSF Ng and topographical distribution of different pathologies in the brain was evaluated. CSF Ng was specifically increased in ADD compared to eight other neurodegenerative diseases, including Parkinson’s disease (p < 0.0001), frontotemporal dementia (p < 0.0001), and amyotrophic lateral sclerosis (p = 0.0002). Similar results were obtained in neuropathologically confirmed cases. Using a biomarker index to evaluate whether CSF Ng contributed diagnostic information to the core AD CSF biomarkers (amyloid β (Aβ), t-tau, and p-tau), we show that Ng significantly increased the discrimination between AD and several other disorders. Higher CSF Ng levels were positively associated with greater Aβ neuritic plaque (Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) neuritic plaque score, p = 0.0002) and tau tangle pathology (Braak neurofibrillary tangles staging, p = 0.0007) scores. In the hippocampus and amygdala, two brain regions heavily affected in ADD with high expression of Ng, CSF Ng was associated with plaque (p = 0.0006 and p < 0.0001), but not with tangle, α-synuclein, or TAR DNA-binding protein 43 loads. These data support that CSF Ng is increased specifically in ADD, that high CSF Ng concentrations likely reflect synaptic dysfunction and that CSF Ng is associated with β-amyloid plaque pathology.
CSF proteome profiling reveals biomarkers to discriminate dementia with Lewy bodies from Alzheimer´s disease
Diagnosis of dementia with Lewy bodies (DLB) is challenging and specific biofluid biomarkers are highly needed. We employed proximity extension-based assays to measure 665 proteins in the cerebrospinal fluid (CSF) from patients with DLB ( n  = 109), Alzheimer´s disease (AD, n  = 235) and cognitively unimpaired controls ( n  = 190). We identified over 50 CSF proteins dysregulated in DLB, enriched in myelination processes among others. The dopamine biosynthesis enzyme DDC was the strongest dysregulated protein, and could efficiently discriminate DLB from controls and AD (AUC:0.91 and 0.81 respectively). Classification modeling unveiled a 7-CSF biomarker panel that better discriminate DLB from AD (AUC:0.93). A custom multiplex panel for six of these markers (DDC, CRH, MMP-3, ABL1, MMP-10, THOP1) was developed and validated in independent cohorts, including an AD and DLB autopsy cohort. This DLB CSF proteome study identifies DLB-specific protein changes and translates these findings to a practicable biomarker panel that accurately identifies DLB patients, providing promising diagnostic and clinical trial testing opportunities. This study characterizes the CSF proteome changes underlying Dementia with Lewy Bodies (DLB) and identifies pathophysiological and diagnostic leads associated to this cause of dementia. Findings have been translated into a biomarker panel that could identify DLB patients with high accuracy across different cohorts.
C9orf72 hypermethylation protects against repeat expansion-associated pathology in ALS/FTD
Hexanucleotide repeat expansions of C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal degeneration. The mutation is associated with reduced C9orf72 expression and the accumulation of potentially toxic RNA and protein aggregates. CpG methylation is known to protect the genome against unstable DNA elements and to stably silence inappropriate gene expression. Using bisulfite cloning and restriction enzyme-based methylation assays on DNA from human brain and peripheral blood, we observed CpG hypermethylation involving the C9orf72 promoter in cis to the repeat expansion mutation in approximately one-third of C9orf72 repeat expansion mutation carriers. Promoter hypermethylation of mutant C9orf72 was associated with transcriptional silencing of C9orf72 in patient-derived lymphoblast cell lines, resulting in reduced accumulation of intronic C9orf72 RNA and reduced numbers of RNA foci. Furthermore, demethylation of mutant C9orf72 with 5-aza-deoxycytidine resulted in increased vulnerability of mutant cells to oxidative and autophagic stress. Promoter hypermethylation of repeat expansion carriers was also associated with reduced accumulation of RNA foci and dipeptide repeat protein aggregates in human brains. These results indicate that C9orf72 promoter hypermethylation prevents downstream molecular aberrations associated with the hexanucleotide repeat expansion, suggesting that epigenetic silencing of the mutant C9orf72 allele may represent a protective counter-regulatory response to hexanucleotide repeat expansion.
Emerging Diagnostic and Therapeutic Strategies for Tauopathies
Purpose of Review Tauopathies represent a spectrum of incurable and progressive age-associated neurodegenerative diseases that currently are diagnosed definitively only at autopsy. Few clinical diagnoses, such as classic Richardson’s syndrome of progressive supranuclear palsy, are specific for underlying tauopathy and no clinical syndrome is fully sensitive to reliably identify all forms of clinically manifest tauopathy. Thus, a major unmet need for the development and implementation of tau-targeted therapies is precise antemortem diagnosis. This article reviews new and emerging diagnostic therapies for tauopathies including novel imaging techniques and biomarkers and also reviews recent tau therapeutics. Recent Findings Building evidence from animal and cell models suggests that prion-like misfolding and propagation of pathogenic tau proteins between brain cells are central to the neurodegenerative process. These rapidly growing developments build rationale and motivation for the development of therapeutics targeting this mechanism through altering phosphorylation and other post-translational modifications of the tau protein, blocking aggregation and spread using small molecular compounds or immunotherapy and reducing or silencing expression of the MAPT tau gene. Summary New clinical criteria, CSF, MRI, and PET biomarkers will aid in identifying tauopathies earlier and more accurately which will aid in selection for new clinical trials which focus on a variety of agents including immunotherapy and gene silencing.
Sequential distribution of pTDP-43 pathology in behavioral variant frontotemporal dementia (bvFTD)
We examined regional distribution patterns of phosphorylated 43-kDa TAR DNA-binding protein (pTDP-43) intraneuronal inclusions in frontotemporal lobar degeneration (FTLD). Immunohistochemistry was performed on 70 μm sections from FTLD-TDP autopsy cases ( n  = 39) presenting with behavioral variant frontotemporal dementia. Two main types of cortical pTDP-43 pathology emerged, characterized by either predominantly perikaryal pTDP-43 inclusions (cytoplasmic type, cFTLD) or long aggregates in dendrites (neuritic type, nFTLD). Cortical involvement in nFTLD was extensive and frequently reached occipital areas, whereas cases with cFTLD often involved bulbar somatomotor neurons and the spinal cord. We observed four patterns indicative of potentially sequential dissemination of pTDP-43: cases with the lowest burden of pathology (pattern I) were characterized by widespread pTDP-43 lesions in the orbital gyri, gyrus rectus, and amygdala. With increasing burden of pathology (pattern II) pTDP-43 lesions emerged in the middle frontal and anterior cingulate gyrus as well as in anteromedial temporal lobe areas, the superior and medial temporal gyri, striatum, red nucleus, thalamus, and precerebellar nuclei. More advanced cases showed a third pattern (III) with involvement of the motor cortex, bulbar somatomotor neurons, and the spinal cord anterior horn, whereas cases with the highest burden of pathology (pattern IV) were characterized by pTDP-43 lesions in the visual cortex. We interpret the four neuropathological patterns in bvFTD to be consistent with the hypothesis that pTDP-43 pathology can spread sequentially and may propagate along axonal pathways.