Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
42
result(s) for
"Ischebeck, Anja"
Sort by:
Driver drowsiness estimation using EEG signals with a dynamical encoder–decoder modeling framework
2022
Drowsiness is a leading cause of accidents on the road as it negatively affects the driver’s ability to safely operate a vehicle. Neural activity recorded by EEG electrodes is a widely used physiological correlate of driver drowsiness. This paper presents a novel dynamical modeling solution to estimate the instantaneous level of the driver drowsiness using EEG signals, where the PERcentage of eyelid CLOSure (PERCLOS) is employed as the ground truth of driver drowsiness. Applying our proposed modeling framework, we find neural features present in EEG data that encode PERCLOS. In the decoding phase, we use a Bayesian filtering solution to estimate the PERCLOS level over time. A data set that comprises 18 driving tests, conducted by 13 drivers, has been used to investigate the performance of the proposed framework. The modeling performance in estimation of PERCLOS provides robust and repeatable results in tests with manual and automated driving modes by an average RMSE of 0.117 (at a PERCLOS range of 0 to 1) and average High Probability Density percentage of 62.5%. We further hypothesized that there are biomarkers that encode the PERCLOS across different driving tests and participants. Using this solution, we identified possible biomarkers such as Theta and Delta powers. Results show that about 73% and 66% of the Theta and Delta powers which are selected as biomarkers are increasing as PERCLOS grows during the driving test. We argue that the proposed method is a robust and reliable solution to estimate drowsiness in real-time which opens the door in utilizing EEG-based measures in driver drowsiness detection systems.
Journal Article
Increased insula activity precedes the formation of subjective illusory Gestalt
by
Körner, Christof
,
Zaretskaya, Natalia
,
Wilding, Marilena
in
Bistable stimulus
,
Brain mapping
,
Consciousness
2022
•We investigated resting-state fMRI predictors of illusory Gestalt perception•We used a bistable stimulus with an illusory and a non-illusory interpretation•The IPS and the putamen showed increased activity after illusory trials•The bilateral insula showed increased activity before illusory trials•This implies an important role of the insula in shaping an illusory percept
The constructive nature of human perception sometimes leads us to perceiving rather complex impressions from simple sensory input: for example, recognizing animal contours in cloud formations or seeing living creatures in shadows of objects. A special type of bistable stimuli gives us a rare opportunity to study the neural mechanisms behind this process. Such stimuli can be visually interpreted either as simple or as more complex illusory content on the basis of the same sensory input. Previous studies demonstrated increased activity in the superior parietal cortex during the perception of an illusory Gestalt impression compared to a simpler interpretation. Here, we examined the role of slow fluctuations of resting-state fMRI activity in shaping the subsequent illusory interpretation by investigating activity related to the illusory Gestalt not only during, but also prior to its perception. We presented 31 participants with a bistable motion stimulus, which can be perceived either as four moving dot pairs (local) or two moving illusory squares (global). fMRI was used to measure brain activity in a slow event-related design. We observed stronger IPS and putamen responses to the stimulus when participants perceived the global interpretation compared to the local, confirming the findings of previous studies. Most importantly, we also observed that the global stimulus interpretation was preceded by an increased activity of the bilateral dorsal insula, which is known to process saliency and gate information for conscious access. Our data suggest an important role of the dorsal insula in shaping complex illusory interpretations of the sensory input.
Journal Article
The impact of different distractions on outdoor visual search and object memory
by
Nachtnebel, Sarah Jasmin
,
Helmers, Linda
,
Höfler, Margit
in
631/378/2649/1310
,
631/477/2811
,
Accuracy
2023
We investigated whether and how different types of search distractions affect visual search behavior and target memory while participants searched in a real-world environment. They searched either undistracted (control condition), listened to a podcast (auditory distraction), counted down aloud at intervals of three while searching (executive working memory load), or were forced to stop the search on half of the trials (time pressure). In line with findings from laboratory settings, participants searched longer but made fewer errors when the target was absent than when it was present, regardless of distraction condition. Furthermore, compared to the auditory distraction condition, the executive working memory load led to higher error rates (but not longer search times). In a surprise memory test after the end of the search tasks, recognition was better for previously present targets than for absent targets. Again, this was regardless of the previous distraction condition, although significantly fewer targets were remembered by the participants in the executive working memory load condition than by those in the control condition. The findings suggest that executive working memory load, but likely not auditory distraction and time pressure affected visual search performance and target memory in a real-world environment.
Journal Article
The effects of transcranial alternating current stimulation (tACS) at individual alpha peak frequency (iAPF) on motor cortex excitability in young and elderly adults
2018
Transcranial alternating current stimulation (tACS) can modulate brain oscillations, cortical excitability and behaviour. In aging, the decrease in EEG alpha activity (8–12 Hz) in the parieto-occipital and mu rhythm in the motor cortex are correlated with the decline in cognitive and motor functions, respectively. Increasing alpha activity using tACS might therefore improve cognitive and motor function in the elderly. The present study explored the influence of tACS on cortical excitability in young and old healthy adults. We applied tACS at individual alpha peak frequency for 10 min (1.5 mA) to the left motor cortex. Transcranial magnetic stimulation was used to assess the changes in cortical excitability as measured by motor-evoked potentials at rest, before and after stimulation. TACS increased cortical excitability in both groups. However, our results also suggest that the mechanism behind the effects was different, as we observed an increase and decrease in intracortical inhibition in the old group and young group, respectively. Our results indicate that both groups profited similarly from the stimulation. There was no indication that tACS was more effective in conditions of low alpha power, that is, in the elderly.
Journal Article
Modulation of proper name recall by transcranial direct current stimulation of the anterior temporal lobes
2022
We often fail to recall another person's name. Proper names might be more difficult to memorize and retrieve than other pieces of knowledge, such as one's profession because they are processed differently in the brain. Neuroimaging and neuropsychological studies associate the bilateral anterior temporal lobes (ATL) in the retrieval of proper names and other person-related knowledge. Specifically, recalling a person's name is thought to be supported by the left ATL, whereas recalling specific information such as a person's occupation is suggested to be subserved by the right ATL. To clarify and further explore the causal relationship between both ATLs and proper name retrieval, we stimulated these regions with anodal, cathodal and sham transcranial direct current stimulation (tDCS) while the participants memorized surnames (e.g., Mr. Baker) and professions (e.g., baker) presented with a person’s face. The participants were then later asked to recall the surname and the profession. Left ATL anodal stimulation resulted in higher intrusion errors for surnames than sham, whereas right ATL anodal stimulation resulted in higher overall intrusion errors, both, surnames and professions, compared to cathodal stimulation. Cathodal stimulation of the left and right ATL had no significant effect on surname and profession recall. The results indicate that the left ATL plays a role in recalling proper names. On the other hand, the specific role of the right ATL remaines to be explored.
Journal Article
Partially dissociative role of the left inferior frontal gyrus and left dorsolateral prefrontal cortex in reasoning
by
Fresnoza, Shane
,
Kern, Maximilian
,
Büsche, Kjell
in
Adult
,
Analysis
,
Biology and Life Sciences
2024
Reasoning is the ability to formulate inferences or conclusions from available information. The two major types, deductive and inductive, are thought to rely on distinct cognitive mechanisms and recruit separate brain areas. Neuroimaging studies yield mixed results; some found the left inferior frontal gyrus (IFG) activations for deductive reasoning and the left dorsolateral prefrontal cortex (DLPFC) for inductive reasoning. This assumption was put to the test in the present study. In two double-blinded, sham-controlled experiments, high-definition transcranial direct current stimulation (HD-tDCS) was used to systematically explore the left IFG’s and DLPFC’s causal role in deductive and inductive reasoning. Participants with no formal training in logic judged deductive and inductive arguments before and after 10 minutes of anodal, cathodal, or sham tDCS of the left IFG (Experiment 1, n = 20) or left DLPFC (Experiment 2, n = 21). Left IFG anodal tDCS impairs reaction times (RTs) for easy categorical ( p = < .001) and propositional ( p = .025) deductive arguments and the accuracy for easy inductive propositional arguments ( p = .003). Meanwhile, regardless of the active stimulation conditions, left DLPFC tDCS shortens RTs (anodal: p = < .001, cathodal: p = .014) and increases accuracy (anodal: p = .029, cathodal: p = .001) for difficult categorical inductive arguments, but decreases accuracy (anodal: p = .027, cathodal: p = < .001) for difficult propositional inductive arguments. The overall results showed a partial dissociation of the left frontal lobe areas subserving the two types of reasoning and argument difficulty-dependent stimulation effects. This study extends knowledge of the neural basis of reasoning and hopefully inspires interventions that could augment reasoning impairments associated with normal aging and brain lesions.
Journal Article
Editorial: Neuro-cognitive Architecture of Numerical Cognition and Its Development
by
Klein, Elise
,
Babai, Reuven
,
Moeller, Korbinian
in
Adults
,
Brain research
,
Cognition & reasoning
2021
[...]numerical and mathematical skills were repeatedly observed to predict not only occupational success (e.g., Ritchie and Bates, 2013) but also more general life prospects (Parsons and Bynner, 2005). The authors identified four specific basic numerical skills (i.e., number sense, arithmetic, patterning/geometry, and data analysis/statistics) that remained stable from 5 to 6 years of age and thus seem to serve as building blocks for further numerical development. [...]in a commentary on the idea of a mental number line in human newborns as proposed by Di Giorgio et al. [...]in a theoretical contribution, Testolin elaborated on how computer simulation at cross-disciplinary intersections can help understand how numerical concepts are learned by the human brain.
Journal Article
Coping with Self-Threat and the Evaluation of Self-Related Traits: An fMRI Study
2015
A positive view of oneself is important for a healthy lifestyle. Self-protection mechanisms such as suppressing negative self-related information help us to maintain a positive view of ourselves. This is of special relevance when, for instance, a negative test result threatens our positive self-view. To date, it is not clear which brain areas support self-protective mechanisms under self-threat. In the present functional magnetic resonance imaging (fMRI) study the participants (N = 46) received a (negative vs. positive) performance test feedback before entering the scanner. In the scanner, the participants were instructed to ascribe personality traits either to themselves or to a famous other. Our results showed that participants responded slower to negative self-related traits compared to positive self-related traits. High self-esteem individuals responded slower to negative traits compared to low self-esteem individuals following a self-threat. This indicates that high self-esteem individuals engage more in self-enhancing strategies after a threat by inhibiting negative self-related information more successfully than low self-esteem individuals. This behavioral pattern was mirrored in the fMRI data as dACC correlated positively with trait self-esteem. Generally, ACC activation was attenuated under threat when participants evaluated self-relevant traits and even more for negative self-related traits. We also found that activation in the ACC was negatively correlated with response times, indicating that greater activation of the ACC is linked to better access (faster response) to positive self-related traits and to impaired access (slower response) to negative self-related traits. These results confirm the ACC function as important in managing threatened self-worth but indicate differences in trait self-esteem levels. The fMRI analyses also revealed a decrease in activation within the left Hippocampus and the right thalamus under threat. This indicates that a down-regulation of activation in these regions might also serve as coping mechanism in dealing with self-threat.
Journal Article
Flexible transfer of knowledge in mental arithmetic — An fMRI study
2009
Recent imaging studies could show that fact acquisition in arithmetic is associated with decreasing activation in several frontal and parietal areas, and relatively increasing activation within the angular gyrus, indicating a switch from direct calculation to retrieval of a learned fact from memory. So far, however, little is known about the transfer of learned facts between arithmetic operations. The aim of the present fMRI study was to investigate whether and how newly acquired arithmetic knowledge might transfer from trained multiplication problems to related division problems. On the day before scanning, ten complex multiplication problems were trained. Within the scanner, trained multiplication problems were compared with untrained multiplication problems, and division problems related to multiplication (transfer condition) were compared with unrelated division problems (no-transfer condition). Replicating earlier results, untrained multiplication problems activated several frontal and parietal brain areas more strongly than trained multiplication problems, while trained multiplication problems showed relatively stronger activation in the left angular gyrus than untrained multiplication problems. Concerning division, an ROI analysis indicated that activation in the left angular gyrus was relatively stronger for the transfer condition than for the no-transfer condition. We also observed distinct inter-individual differences with regard to transfer that modulated activation within the left angular gyrus. Activation within the left angular gyrus was generally higher for participants who showed a transfer effect for division problems. In conclusion, the present study yielded some evidence that successful transfer of knowledge between arithmetic operations is accompanied by modifications of brain activation patterns. The left angular gyrus seems not only to be involved in the retrieval of stored arithmetic facts, but also in the transfer between arithmetic operations.
Journal Article
Age-Dependent Effect of Transcranial Alternating Current Stimulation on Motor Skill Consolidation
2020
Transcranial alternating current stimulation (tACS) is the application of subthreshold, sinusoidal current to modulate ongoing brain rhythms related to sensory, motor and cognitive processes. Electrophysiological studies suggested that the effect of tACS applied at an alpha frequency (8-12 Hz) was state-dependent. The effects of tACS, that is, an increase in parieto-occipital electroencephalography (EEG) alpha power and magnetoencephalography (MEG) phase coherence, was only observed when the eyes were open (low alpha power) and not when the eyes were closed (high alpha power). This state-dependency of the effects of alpha tACS might extend to the aging brain characterized by general slowing and decrease in spectral power of the alpha rhythm. We additionally hypothesized that tACS will influence the motor cortex, which is involved in motor skill learning and consolidation. A group of young and old healthy adults performed a serial reaction time task (SRTT) with their right hand before and after the tACS stimulation. Each participant underwent three sessions of stimulation: sham, stimulation applied at the individual participant's alpha peak frequency or individual alpha peak frequency (iAPF; α-tACS) and stimulation with iAPF plus 2 Hz (α2-tACS) to the left motor cortex for 10 min (1.5 mA). We measured the effect of stimulation on general motor skill (GMS) and sequence-specific skill (SS) consolidation. We found that α-tACS and α2-tACS improved GMS and SS consolidation in the old group. In contrast, α-tACS minimally improved GMS consolidation but impaired SS consolidation in the young group. On the other hand, α2-tACS was detrimental to the consolidation of both skills in the young group. Our results suggest that individuals with aberrant alpha rhythm such as the elderly could benefit more from tACS stimulation, whereas for young healthy individuals with intact alpha rhythm the stimulation could be detrimental.
Journal Article