Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Ishibe, Takeo"
Sort by:
Regional probabilistic tsunami hazard assessment associated with active faults along the eastern margin of the Sea of Japan
We analyze the regional tsunami hazard along the Sea of Japan coast associated with 60 active faults beneath the eastern margin of the Sea of Japan. We generate stochastic slip distribution using a Monte Carlo approach at each fault, and the total number of required earthquake samples is determined based on convergence analysis of maximum coastal tsunami heights. The earthquake recurrence interval on each fault is estimated from observed seismicity. The variance parameter representing aleatory uncertainty for probabilistic tsunami hazard analysis is determined from comparison with the four historical tsunamis, and a logic-tree is used for the choice of the values. Using nearshore tsunami heights at the 50 m isobath and an amplification factor by the Green’s law, hazard curves are constructed at 154 locations for coastal municipalities along the Sea of Japan coast. The highest maximum coastal tsunamis are expected to be approximately 3.7, 7.7, and 11.5 m for the return periods of 100-, 400-, and 1000-year, respectively. The results indicate that the hazard level generally increases from southwest to northeast, which is consistent with the number and type of the identified fault systems. Furthermore, the deaggregation of hazard suggests that tsunamis in the northeast are predominated by local sources, while the southwest parts are likely affected by several regional sources.
Effects of uncertainty in fault parameters on deterministic tsunami hazard assessment: examples for active faults along the eastern margin of the Sea of Japan
We investigated the effects of fault parameter uncertainty on the deterministic assessment of tsunami hazards for the submarine and coastal active faults in the Sea of Japan that were recently modeled by the Integrated Research Project on Seismic and Tsunami Hazards around the Sea of Japan. A key parameter in scenario-based tsunami assessment is the fault slip amount, which is usually calculated from empirical scaling relations that relate the fault size to the slip. We examined four methods to estimate the fault slip amounts and compared the coastal tsunami heights from the slip amounts obtained by two different empirical relations. The resultant coastal tsunami heights were strongly affected by the choice of scaling relation, particularly the fault aspect ratio (fault length/fault width). The geometric means of the coastal tsunami heights calculated from the two methods ranged from 0.69 to 4.30 with an average of 2.01. We also evaluated the effects of fault slip angles, which are also important parameters for controlling coastal tsunami heights, by changing the slip angles for faults in the southwestern and central parts of the Sea of Japan, where the strike-slip faults are concentrated. The effects of uncertainty of the fault slip angles (± 30° from the standard) on the coastal tsunami heights were revealed to be equal to or greater than those resulting from the choice of scaling relations; the geometric means of the coastal tsunami heights from the modified fault slip angles relative to the standard fault slip angles ranged from 0.23 to 5.88. Another important characteristic is that the locations of the maximum coastal tsunami height and the spatial pattern of the coastal tsunami heights can change with varying fault slip angles.
Reexamination of tsunami source models for the twentieth century earthquakes off Hokkaido and Tohoku along the eastern margin of the Sea of Japan
Large earthquakes around Japan occur not only in the Pacific Ocean but also in the Sea of Japan, and cause both damage from the earthquake itself and from the ensuing tsunami to the coastal areas. Recently, offshore active fault surveys were conducted in the Sea of Japan by the Integrated Research Project on Seismic and Tsunami Hazards around the Sea of Japan (JSPJ), and their fault models (length, width, strike, dip, and slip angles) have been obtained. We examined the causative faults of M7 or larger earthquakes in the Sea of Japan during the twentieth century, comprising events of 1940, 1964, 1983, and 1993, using seismic and tsunami data. The 1940 off Shakotan Peninsula earthquake (MJMA 7.5) appears to have been caused by the offshore active faults MS01, MS02, ST01, and ST02 as modeled by the JSPJ. The 1993 off the southwest coast of Hokkaido earthquake (MJMA 7.8) likely occurred on the offshore active faults OK03a, OK03b, and OK05, while the 1983 Central Sea of Japan earthquake (MJMA 7.7) probably related to MMS01, MMS04, and MGM01. For these earthquakes, the observed tsunami waveforms were basically reproduced by tsunami numerical simulation from the offshore active faults with the slip amounts obtained by the scaling relation with three stages between seismic moment and source area for inland earthquakes. However, the observed tsunami runup heights along the coast were not reproduced at certain locations, possibly because of the coarse bathymetry data used for the simulation. The 1983 west off Aomori (MJMA 7.1) and the 1964 off Oga Peninsula (MJMA 6.9) earthquakes showed multiple faults near the source area that could be used to reproduce the observed tsunami waveforms; therefore, we could not identify the causative faults. Further analysis using near-field seismic waveforms is required for their identification of their causative faults and their parameters. The scaling relation for inland earthquakes can be used to obtain the slip amounts for offshore active faults in the Sea of Japan and to estimate the coastal tsunami heights and inundation area which can be useful for disaster prevention and mitigation of future earthquakes and tsunamis.
Field surveys of September 2018 landslide-generated waves in the Apporo dam reservoir, Japan: combined hazard from the concurrent occurrences of a typhoon and an earthquake
We report and analyze a case study of landslide-generated waves that occurred in the Apporo dam reservoir (Hokkaido, Japan) culminating from the rare incident of hazard combination from the September 2018 Typhoon Jebi and Hokkaido earthquake (Mw 6.6 on 5 September 2018). The typhoon and earthquake were concurrent and produced thousands of landslides in the area by the combined effects of soil saturation and ground acceleration. Here, we report the results of our field surveys of the landslides that occurred around the Apporo dam and generated damaging waves in the reservoir. We identified six landslides at a close distance to the dam body; the largest one has a length of 330 m, a maximum width of 140 m and a volume of 71,400 m3. We measured wave runup at a single point with height of 5.3 m for the landslide-generated wave in the reservoir and recorded the damage made to the revetments at the reservoir banks. By considering the locations of the landslides and their potential propagation paths, we speculate that possibly three of the six surveyed landslides contributed to the measured wave runup. The surveyed runup was reproduced by inputting landslide parameters into two independent empirical equations; however, other independent empirical relationships failed to reproduce the observed runup. Our field data from the Apporo dam can be used to improve the quality of predictions made by empirical equations and to encourage further research on this topic. In addition, our field data serves as a call for strengthening dams’ safety to landslide-generated waves in reservoirs.
Variability of ETAS parameters and their relationship with physical processes for earthquake forecasting in Africa
The epidemic-type aftershock sequence (ETAS) model is commonly used for seismic risk assessment and earthquake forecasting. It incorporates physically interpretable parameters that control the behavior of offsprings. Variability in these parameters suggests that earthquakes are driven by distinct mechanisms. Since these parameters vary with local geological factors and are not transferable across tectonic settings, region-specific calibration is essential. Currently, however, no ETAS parameter estimates exist for Africa, so seismic hazard assessments on the continent often rely on approximations rather than tailored approaches. To address this, we investigate ETAS parameters variability across Africa by dividing the continent into sub-regions and fitting the model to earthquakes in each subregion using the Davidon–Fletcher–Powell optimization algorithm. We then compare parameter estimates across sub-regions and examine potential correlations with physical properties of the Earth’s crust that are commonly thought to be the main driving factor in earthquake occurrence. Our results reveal complex regional variations in ETAS estimates. Parameters that describe productivity ( α ), temporal decay ( c ), and spatial distribution ( d , γ ) of aftershocks appear to be the most widely dispersed, probably due to missing events in the catalog caused by sparse seismic networks. Additionally, we observe correlations between certain parameters and geophysical properties of the crust, including a positive correlation between the parameter p , which represents the decay of aftershocks, and both heat flow and the compressional-to-shear-wave velocity ratio, and a negative correlation with Curie depth. An extreme value distribution analysis suggests a relatively high probability of a magnitude 7 or greater earthquake occurring in Northwest Africa and the western East African Rift System within the next decade, underscoring the need for measures that enhance public awareness and preparedness in these regions. Our results provide a preliminary set of ETAS parameters for Africa and can serve as a reference for implementing operational earthquake forecasting on the continent. Graphical Abstract
Can the regional 3D stress field according to the Wallace–Bott hypothesis predict fault slip directions of future large earthquakes?
When evaluating strong ground motions and tsunamis from specified source faults, it is required that the input parameters, such as fault geometry, rake angle, and slip amount, do not deviate from those of a real earthquake. Recently, a regional three-dimensional (3D) tectonic stress field was used to estimate rake angles for mapped submarine faults with the Wallace–Bott hypothesis (WBH), the direction of fault slip was parallel to the resolved stress vector on a preexisting fault, and strong ground motions and tsunamis were simulated. However, this modeling technique has not been adequately validated. Additionally, it is necessary to examine how the stress field estimated from seismological data for a limited period (~ 10 years) can be used as a proxy for the long-term tectonic stress field. In this study, to provide such validation, we utilized two catalogs of focal mechanism solutions for earthquakes and compared the observed rake angles with those calculated from the regional 3D tectonic stress field with the WBH by fixing the fault strike and dip angles according to those from the focal mechanism data. The resulting misfit angles between the observed and calculated rake angles are generally small (ranging between − 30° and 30°), excluding several regions (e.g., the source and surrounding regions of the 2011 off the Pacific coast of Tohoku earthquake and swarm-like activities activated after the 2011 quake). We also confirmed that the calculated rake angles and classified fault types are consistent with geomorphologically and geologically evaluated types of faulting for major Quaternary active faults in the Kyushu district of southwest Japan. These results support the validity and effectiveness of estimating rake angles for a specific fault with known geometry from the above method and data, while also showing that close attention is needed to apply this method to, for example, seismically inactive regions where the inverted stress field includes significant uncertainties and/or near sites of recent and large earthquakes where the stress field has been perturbed. Graphical Abstract
Bodrum–Kos (Turkey–Greece) Mw 6.6 earthquake and tsunami of 20 July 2017: a test for the Mediterranean tsunami warning system
Various Tsunami Service Providers (TSPs) within the Mediterranean Basin supply tsunami warnings including CAT-INGV (Italy), KOERI-RETMC (Turkey), and NOA/HL-NTWC (Greece). The 20 July 2017 Bodrum–Kos (Turkey–Greece) earthquake (Mw 6.6) and tsunami provided an opportunity to assess the response from these TSPs. Although the Bodrum–Kos tsunami was moderate (e.g., runup of 1.9 m) with little damage to properties, it was the first noticeable tsunami in the Mediterranean Basin since the 21 May 2003 western Mediterranean tsunami. Tsunami waveform analysis revealed that the trough-to-crest height was 34.1 cm at the near-field tide gauge station of Bodrum (Turkey). Tsunami period band was 2–30 min with peak periods at 7–13 min. We proposed a source fault model for this tsunami with the length and width of 25 and 15 km and uniform slip of 0.4 m. Tsunami simulations using both nodal planes produced almost same results in terms of agreement between tsunami observations and simulations. Different TSPs provided tsunami warnings at 10 min (CAT-INGV), 19 min (KOERI-RETMC), and 18 min (NOA/HL-NTWC) after the earthquake origin time. Apart from CAT-INGV, whose initial Mw estimation differed 0.2 units with respect to the final value, the response from the other two TSPs came relatively late compared to the desired warning time of ~ 10 min, given the difficulties for timely and accurate calculation of earthquake magnitude and tsunami impact assessment. It is argued that even if a warning time of ~ 10 min was achieved, it might not have been sufficient for addressing near-field tsunami hazards. Despite considerable progress and achievements made within the upstream components of NEAMTWS (North East Atlantic, Mediterranean and Connected seas Tsunami Warning System), the experience from this moderate tsunami may highlight the need for improving operational capabilities of TSPs, but more importantly for effectively integrating civil protection authorities into NEAMTWS and strengthening tsunami education programs.
Tsunami Heights along the Pacific Coast of Northern Honshu Recorded from the 2011 Tohoku and Previous Great Earthquakes
The 2011 Tohoku earthquake generated a huge, destructive tsunami with coastal heights of up to 40 m recorded along northern Honshu. The Sanriku coast experienced similar tsunamis and damage from the 1896 and 1933 Sanriku earthquakes, whereas the only damaging tsunamis on both the Ibaraki and Chiba coasts in the previous century were from the 1960 and 2010 Chile earthquakes. We summarized 12 field surveys in which the height of the 2011 tsunami was recorded at 296 points, along with descriptions of the survey method, reliability, and accuracy. We then compared them with the above-mentioned tsunamis at locations for which specific measurements were given in previous reports. On the Sanriku coast, the 2011 tsunami heights are positively correlated with the previous Sanriku tsunamis, indicating that local variations resulting from the irregular coastline were more dominant factors than the earthquake location, type, or magnitude for near-field tsunamis. The correlations with the Chilean tsunami heights are less significant due to the differences between the local and trans-Pacific tsunamis. On the Ibaraki and Chiba coasts, the 2011 Tohoku and the two Chilean tsunami heights are positively correlated, showing the general decrease toward the south with small local variations such as large heights near peninsulas.
Change in seismicity beneath the Tokyo metropolitan area due to the 2011 off the Pacific coast of Tohoku Earthquake
Static changes in the Coulomb Failure Function (ΔCFF) forecast an increase in seismicity in and around the Tokyo metropolis after the 2011 off the Pacific coast of Tohoku Earthquake (magnitude 9.0). Among the 30,694 previous events in this region with various depth and focal mechanism, almost 19,000 indicate a significant increase of the ΔCFF, while less than 6,000 indicate a significant decrease. An increase in seismicity is predicted in southwestern Ibaraki and northern Chiba prefectures where intermediate-depth earthquakes occur, and in the shallow crust of the Izu and Hakone regions. A comparison of seismicity before and after the 2011 event reveals that the seismicity in the above regions indeed increased as predicted from the ΔCFF.
Testing the Coulomb stress triggering hypothesis for three recent megathrust earthquakes
We test the static Coulomb stress triggering hypothesis for three recent megathrust earthquakes (the 2004 Sumatra–Andaman earthquake, the 2010 Maule earthquake, and the 2011 Tohoku-Oki earthquake) using focal mechanism solutions for actual earthquakes as receiver faults to calculate Coulomb stress changes. For the 2004 Sumatra–Andaman and 2011 Tohoku-Oki earthquakes, the median values of the Coulomb stress changes for 100 consecutive earthquakes revealed temporal changes from approximately zero before the megathrust earthquake to significant positive values following the mainshock, followed by decay over time. Furthermore, the ratio of the number of positively to negatively stressed receiver faults increased after the megathrust. These results support the triggering hypothesis that the static stress changes imparted by megathrust earthquakes cause seismicity changes. This is in contrast to the results of a previous study that used optimally orientated receiver faults to calculate Coulomb stress changes, and this difference indicates the importance of considering the spatial and temporal heterogeneities of receiver fault distributions. For the 2010 Maule earthquake, however, the results are strongly dependent on fault-slip models. Since most receiver faults are concentrated in the mainshock source region, slip models significantly affect the computed Coulomb stress changes and sometimes cause anomalous stress concentrations along the edge of each sub-fault.