Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
360 result(s) for "Ishikawa, Tatsuya"
Sort by:
Human RAD51 paralogue SWSAP1 fosters RAD51 filament by regulating the anti-recombinase FIGNL1 AAA+ ATPase
RAD51 assembly on single-stranded (ss)DNAs is a crucial step in the homology-dependent repair of DNA damage for genomic stability. The formation of the RAD51 filament is promoted by various RAD51-interacting proteins including RAD51 paralogues. However, the mechanisms underlying the differential control of RAD51-filament dynamics by these factors remain largely unknown. Here, we report a role for the human RAD51 paralogue, SWSAP1, as a novel regulator of RAD51 assembly. Swsap1 -deficient cells show defects in DNA damage-induced RAD51 assembly during both mitosis and meiosis. Defective RAD51 assembly in SWSAP1-depleted cells is suppressed by the depletion of FIGNL1, which binds to RAD51 as well as SWSAP1. Purified FIGNL1 promotes the dissociation of RAD51 from ssDNAs. The dismantling activity of FIGNL1 does not require its ATPase but depends on RAD51-binding. Purified SWSAP1 inhibits the RAD51-dismantling activity of FIGNL1. Taken together, our data suggest that SWSAP1 protects RAD51 filaments by antagonizing the anti-recombinase, FIGNL1. RAD51 assembly on single-stranded DNAs is an important step in the homology-dependent repair of DNA damage. Here authors reveal a role for the human RAD51 paralogue, SWSAP1, as a regulator of RAD51 assembly, by antagonizing RAD51 remodeller, FIGNL1 AAA + ATPase.
Distinctive features of lipoprotein profiles in stroke patients
Classes of lipoproteins solubilize lipids in the blood, and their profiles are important for preventing atherosclerotic diseases. These can be identified by gel filtration HPLC, which has been analyzed in a manner that yields the same values as the de facto standard method, i.e., ultracentrifugation; however, previous studies have found that ultracentrifugation and its simplified alternatives, enzymatic methods, yield incorrect values. Here HPLC data of stroke patients and the controls were compared using data-driven analyses, without consideration for ultracentrifugation. The data well-separated patients from controls. In many patients, the level of HDL1 (a cholesterol scavenger) was low. The TG/cholesterol ratio of chylomicrons was found to be low in patients and high in the healthy elderly; the lower level may indicate a larger intake of animal fats. High levels of free glycerol in the elderly were hazardous, suggesting more dependence on lipids as an energy source. Statins had minimal effect on these factors. LDL cholesterol, the commonly-used risk indicator, was not a risk factor actually. Enzymatic methods failed to separate the patients from the control; hence, the existing guidelines for screening methods and medical treatment need to be revised. As an immediate step, glycerol would be an adaptable indicator.
Diverse Roles of NETosis in the Pathogenesis of Lupus
NETosis is a form of neutrophil cell death during which extracellular fibrillary structures composed of cytosolic and granule proteins assembled on scaffolds of decondensed chromatin, called neutrophil extracellular traps (NETs), are released. NETs normally contribute to host immune defense. Accumulating evidence implicates aberrant NET production and/or reduced NET clearance, along with alterations of molecules involved in NETosis pathway, in humans and animals with lupus. The extruded nuclear antigens released by NET are a source of autoantigens, which can contribute to the breakdown of self-tolerance in lupus. Excessive NET can also promote the production of pro-inflammatory cytokine interferon-α, elicit direct cytotoxic effect on various renal cells, and cause capillary necrosis and podocyte loss. Additionally, NET can induce endothelial-to-mesenchymal transdifferentiation, which can promote activated myofibroblasts leading to extracellular matrix production. Thus, aberrant NETosis can play diverse roles, including autoantibody production, inflammation, and tissue damage, at different stages of lupus pathogenesis. Evidence suggests that treatments currently used in lupus may reduce NETosis, suggesting a potential utility of targeting NETosis to treat lupus. In fact, several approaches are being experimented to therapeutically target pathways of NETosis. Future studies should precisely delineate distinct roles of NETosis at different stages of lupus pathogenesis in humans, which would offer a rational basis for NETosis-targeting treatments in the clinic.
Cortical astrocytes rewire somatosensory cortical circuits for peripheral neuropathic pain
Long-term treatments to ameliorate peripheral neuropathic pain that includes mechanical allodynia are limited. While glial activation and altered nociceptive transmission within the spinal cord are associated with the pathogenesis of mechanical allodynia, changes in cortical circuits also accompany peripheral nerve injury and may represent additional therapeutic targets. Dendritic spine plasticity in the S1 cortex appears within days following nerve injury; however, the underlying cellular mechanisms of this plasticity and whether it has a causal relationship to allodynia remain unsolved. Furthermore, it is not known whether glial activation occurs within the S1 cortex following injury or whether it contributes to this S1 synaptic plasticity. Using in vivo 2-photon imaging with genetic and pharmacological manipulations of murine models, we have shown that sciatic nerve ligation induces a re-emergence of immature metabotropic glutamate receptor 5 (mGluR5) signaling in S1 astroglia, which elicits spontaneous somatic Ca2+ transients, synaptogenic thrombospondin 1 (TSP-1) release, and synapse formation. This S1 astrocyte reactivation was evident only during the first week after injury and correlated with the temporal changes in S1 extracellular glutamate levels and dendritic spine turnover. Blocking the astrocytic mGluR5-signaling pathway suppressed mechanical allodynia, while activating this pathway in the absence of any peripheral injury induced long-lasting (>1 month) allodynia. We conclude that reawakened astrocytes are a key trigger for S1 circuit rewiring and that this contributes to neuropathic mechanical allodynia.
Identification of genetic variations in μ opioid receptor in cats
μ-opioid receptor (MOP) plays a critical role in mediating opioid analgesic effects. Genetic variations, particularly those in the MOP gene (Oprm1), significantly influence individual variations in opioid efficacy and side effects across species, highlighting the need for pharmacogenomic research in human and veterinary contexts. This study aimed to identify single-nucleotide variations (SNVs) within Oprm1 in 100 cats of various breeds. Oprm1 spans over 170 kb and consists of five exons that combine to yield three splice variants in the cat Ensembl database. Among these variants, Oprm1-202 is an ortholog of the MOR-1 transcript, which is the most abundant in humans and mice. Oprm1-202 shares 92% and 87% coding sequences (CDS) and 96% and 94% amino acid sequence identity with human and mouse MOR-1, respectively. Phylogenetic trees were constructed from the CDS and amino acid sequences of nine species, including humans, cats, and mice. Both the CDS and amino acid sequences of MOP in cats showed phylogenetic development closer to that of primates than of rodents. Four SNVs were identified in the CDS of Oprm1. One SNV was located in exon 1 and the other three in exon 2 of Oprm1, all of which were synonymous substitutions. Although synonymous mutations generally have a limited functional impact, they may influence splicing and receptor expression. Further research is required to assess the effects of these SNVs on opioid efficacy, receptor expression, and analgesic responses across breeds, considering the potential breed-specific genetic factors in cat species.
Exploratory analysis using machine learning of predictive factors for falls in type 2 diabetes
We aimed to investigate the status of falls and to identify important risk factors for falls in persons with type 2 diabetes (T2D) including the non-elderly. Participants were 316 persons with T2D who were assessed for medical history, laboratory data and physical capabilities during hospitalization and given a questionnaire on falls one year after discharge. Two different statistical models, logistic regression and random forest classifier, were used to identify the important predictors of falls. The response rate to the survey was 72%; of the 226 respondents, there were 129 males and 97 females (median age 62 years). The fall rate during the first year after discharge was 19%. Logistic regression revealed that knee extension strength, fasting C-peptide (F-CPR) level and dorsiflexion strength were independent predictors of falls. The random forest classifier placed grip strength, F-CPR, knee extension strength, dorsiflexion strength and proliferative diabetic retinopathy among the 5 most important variables for falls. Lower extremity muscle weakness, elevated F-CPR levels and reduced grip strength were shown to be important risk factors for falls in T2D. Analysis by random forest can identify new risk factors for falls in addition to logistic regression.
Symptomatic Vasospasm Refractory to Clazosentan after Subarachnoid Hemorrhage of Ruptured Vertebral Artery Dissecting Aneurysm: Clinical Implications from Two Contrasting Cases
Clazosentan prevents vasospasms after aneurysmal subarachnoid hemorrhage (SAH). However, clinical data on patients with SAH with ruptured vertebral artery dissecting aneurysms (VADAs) are limited. We report the case of a 49-year-old male patient with mild-grade (WFNS grade 1) thick and diffuse (modified Fisher grade 3) SAH who underwent endovascular trapping of a ruptured VADA, resulting in a poor functional outcome with a modified Rankin Scale score of 4 due to severe symptomatic vasospasm refractory to clazosentan, requiring repeated rescue endovascular therapies and chronic communicating hydrocephalus. A retrospective analysis of the clot density in the basal and Sylvian cisterns, assessed by the Hounsfield unit (HU) values of serial CT scans, in this patient showed persistent higher values, distinct from another VADA case that showed a decline in HU values with a good clinical course. These results imply the limited effectiveness of clazosentan in cases of thick and diffuse SAH after a ruptured VADA, even in good-clinical-grade patients treated with less invasive modalities. The HU values may become a simple quantitative marker for predicting symptomatic vasospasms and chronic hydrocephalus.
Impact of microgravity and lunar gravity on murine skeletal and immune systems during space travel
Long-duration spaceflight creates a variety of stresses due to the unique environment, which can lead to compromised functioning of the skeletal and immune systems. However, the mechanisms by which organisms respond to this stress remain unclear. The present study aimed to investigate the impact of three different gravitational loadings (microgravity, 1/6  g [lunar gravity], and 1  g ) on the behavior, bone, thymus, and spleen of mice housed for 25–35 days in the International Space Station. The bone density reduction under microgravity was mostly recovered by 1  g but only partially recovered by 1/6  g . Both 1  g and 1/6  g suppressed microgravity-induced changes in some osteoblast and osteoclast marker gene expression. Thymus atrophy induced by microgravity was half recovered by both 1  g and 1/6  g , but gene expression changes were not fully recovered by 1/6  g . While no histological changes were observed due to low gravity, alterations in gene expression were noted in the spleen. We found that in bone and thymus, lunar gravity reduced microgravity-induced histological alterations and partially reversed gene expression changes. This study highlighted organ-specific variations in responsiveness to gravity, serving as an animal test for establishing a molecular-level gravity threshold for maintaining a healthy state during future spaceflight.
In Pursuit of Adult Progenitors of Thymic Epithelial Cells
Peripheral T cells capable of discriminating between self and non-self antigens are major components of a robust adaptive immune system. The development of self-tolerant T cells is orchestrated by thymic epithelial cells (TECs), which are localized in the thymic cortex (cortical TECs, cTECs) and medulla (medullary TECs, mTECs). cTECs and mTECs are essential for differentiation, proliferation, and positive and negative selection of thymocytes. Recent advances in single-cell RNA-sequencing technology have revealed a previously unknown degree of TEC heterogeneity, but we still lack a clear picture of the identity of TEC progenitors in the adult thymus. In this review, we describe both earlier and recent findings that shed light on features of these elusive adult progenitors in the context of tissue homeostasis, as well as recovery from stress-induced thymic atrophy.
Tertiary lymphoid structures as local perpetuators of organ-specific immune injury: implication for lupus nephritis
In response to inflammatory stimuli in conditions such as autoimmune disorders, infections and cancers, immune cells organize in nonlymphoid tissues, which resemble secondary lymphoid organs. Such immune cell clusters are called tertiary lymphoid structures (TLS). Here, we describe the potential role of TLS in the pathogenesis of autoimmune disease, focusing on lupus nephritis, a condition that incurs major morbidity and mortality. In the kidneys of patients and animals with lupus nephritis, the presence of immune cell aggregates with similar cell composition, structure, and gene signature as lymph nodes and of lymphoid tissue-inducer and -organizer cells, along with evidence of communication between stromal and immune cells are indicative of the formation of TLS. TLS formation in kidneys affected by lupus may be instigated by local increases in lymphorganogenic chemokines such as CXCL13, and in molecules associated with leukocyte migration and vascularization. Importantly, the presence of TLS in kidneys is associated with severe tubulointerstitial inflammation, higher disease activity and chronicity indices, and poor response to treatment in patients with lupus nephritis. TLS may contribute to the pathogenesis of lupus nephritis by increasing local IFN-I production, facilitating the recruitment and supporting survival of autoreactive B cells, maintaining local production of systemic autoantibodies such as anti-dsDNA and anti-Sm/RNP autoantibodies, and initiating epitope spreading to local autoantigens. Resolution of TLS, along with improvement in lupus, by treating animals with soluble BAFF receptor, docosahexaenoic acid, complement inhibitor C4BP( β -), S1P1 receptor modulator Cenerimod, dexamethasone, and anti-CXCL13 further emphasizes a role of TLS in the pathogenesis of lupus. However, the mechanisms underlying TLS formation and their roles in the pathogenesis of lupus nephritis are not fully comprehended. Furthermore, the lack of non-invasive methods to visualize/quantify TLS in kidneys is also a major hurdle; however, recent success in visualizing TLS in lupus-prone mice by photon emission computed tomography provides hope for early detection and manipulation of TLS.