Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"Itiki, Rodney"
Sort by:
Proposed Extension of the U.S.–Caribbean Super Grid to South America for Resilience during Hurricanes
by
Manjrekar, Madhav
,
Itiki, Rodney
,
Di Santo, Silvio Giuseppe
in
Air-turbines
,
Algorithms
,
Alternative energy sources
2024
Climate change mitigation, adaptation to intensifying hurricanes, and decarbonization challenges in developing countries emphasize the urgent need for resilient high-voltage grids to facilitate the expansion of renewables. This research explores the technical feasibility of extending the U.S.–Caribbean Super Grid to include the Virgin Islands, Guadeloupe, Martinique, Trinidad and Tobago, Guyana, Suriname, French Guyana, and the northeastern part of Brazil in South America. This proposed extension aims to capitalize on the recent introduction of a new generation of wind turbines certified for operation under strong hurricane forces. The research utilizes modeling and simulation techniques to evaluate the performance of the proposed extension. A method for modeling and estimating spatiotemporal wind power profiles is applied, and the results demonstrate a reduction in maximum wind power variability within the U.S.–Caribbean Super Grid. Depending on the hurricane trajectory, the variability is reduced from 56.6% to less than 43.2%. This reduction takes effect by distributing peak surplus wind power alongside the proposed U.S.–Caribbean–South America Super Grid (UCASG). The research concludes by acknowledging the merits and limitations of the study and discussing potential directions for future research in this field.
Journal Article
Method for Spatiotemporal Solar Power Profile Estimation for a Proposed U.S.–Caribbean–South America Super Grid under Hurricanes
by
Stenvig, Nils
,
Itiki, Rodney
,
Di Santo, Silvio Giuseppe
in
2005 AD
,
Alternative energy sources
,
Analysis
2024
Solar photovoltaic (PV) generation technology stands out as a scalable and cost-effective solution to enable the transition toward decarbonization. However, PV solar output, beyond the daily solar irradiance variability and unavailability during nights, is very sensitive to weather events like hurricanes. Hurricanes nucleate massive amounts of clouds around their centers, shading hundreds of kilometers in their path, reducing PV power output. This research proposes a spatiotemporal method, implemented in MATLAB R2023b coding, to estimate the shading effect of hurricanes over a wide distribution of PV solar plants connected to a high-voltage power infrastructure called the U.S.–Caribbean–South America super grid. The complete interconnection of the U.S., the Caribbean, and South America results in the lowest power valley levels, i.e., an overall percentual reduction in PV power output caused by hurricane shading. The simulations assess the impact of hurricanes in 10 synthetic trajectories spanning from Texas to Florida. The Caribbean would also experience lower power valleys with expanded interconnectivity schemes. The U.S.–Caribbean–South America super grid reduces Caribbean variability from 37.8% to 8.9% in the case study. The proposed spatiotemporal method for PV power profile estimation is a valuable tool for future solar power generation expansion, transmission planning, and system design considering the impact of hurricanes.
Journal Article
Methods for Spatiotemporal Power Profile From Marine Hydrokinetic Energy and Wind Energy for a Proposed U.S.-Caribbean-South America Super Grid Under Hurricanes
2023
Global warming and climate change keep causing a catastrophic impact on the natural, social, economic, and political environment in many parts of the world. The urgency for the transition to a low-carbon economy through CO2 emissions reduction calls for innovative methods to harvest renewable energy sources to displace unsustainable fossil fuel power in North America. This work presents proposed methods for marine hydrokinetic and solar renewable power generation. On another front, since addressing the causes of global warming and climate change is not timely enough, this author proposes technologies to minimize their effects, which manifest through extreme weather events. Since renewables harvesting generates variable power profiles during extreme weather events, this work investigates high voltage interconnectors to smooth the total power variability of wind power farms far distant between themselves under hurricane events. In summary, the proposed methods and high voltage enforcements address the causes and effects of climate change and global warming on the existing and future power grids. Furthermore, the proposed methods and enforcements lay the foundations for future studies on large-scale renewable multi-source super grids, with a consequential impact on reducing greenhouse gas emissions and improving power resilience in North America.
Dissertation