Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
27 result(s) for "Izui, Shozo"
Sort by:
Pathogenic Role of a Proliferation-Inducing Ligand (APRIL) in Murine IgA Nephropathy
A proliferation-inducing ligand (APRIL) is a member of the tumor necrosis factor (TNF) superfamily. Despite advances in clinical and genetic studies, the details of the pathological roles of APRIL in IgA nephropathy (IgAN) remain to be fully defined. The present study aimed to further assess the pathological role of APRIL using a mouse model of IgAN. Mice with IgAN designated \"grouped ddY\" (gddY) were intraperitoneally administered an anti-APRIL monoclonal antibody (anti-APRIL Ab) or control IgG (Control Ab) twice each week for 2 weeks starting during the early stage of IgAN (6-7 weeks of age). Urinary albumin, serum IgA, and glomerular IgA deposition were evaluated. We further assessed the inflammatory responses during treatment by measuring the levels of the chemokine fractalkine (FKN) and its receptor CX3CR1 as well as the level of peripheral blood monocytosis. Anti-APRIL Ab treatment significantly decreased albuminuria and tissue damage combined with decreases in serum IgA levels and deposition of glomerular IgA. In contrast, the abundance of IgA+/B220+ or CD138+/B220+ B cells in the spleen and bone marrow, respectively, was unchanged. Treating gddY mice with anti-April Ab reduced the overexpression of FKN/CX3CR1 in the kidney and the increase in the population of circulating Gr1-/CD115+ monocytes. The size of the population of Gr1-/CD115+ monocytes correlated with renal FKN and urinary albumin levels. Moreover, mice treated with anti-APRIL Ab exhibited reduced progression of IgAN, serum IgA levels, and glomerular IgA deposition as well as an attenuated inflammatory process mediated by FKN-associated activation of monocytes. To the best of our knowledge, this is the first study to implicate the APRIL signal transduction pathway in the pathogenesis of nephrogenic IgA production. Moreover, our findings identify APRIL as a potential target of therapy.
LatY136F knock-in mouse model for human IgG4-related disease
The adaptor protein Linker for activation of T cell (LAT) is a key signaling hub used by the T cell antigen receptor. Mutant mice expressing loss-of-function mutations affecting LAT and including a mutation in which tyrosine 136 is replaced by a phenylalanine (LatY136F) develop lymphoproliferative disorder involving T helper type 2 effector cells capable of triggering a massive polyclonal B cell activation that leads to hypergammaglobulinemia G1 and E and to non-resolving inflammation and autoimmunity. The purpose of this study was to evaluate whether the phenotypes of LatY136F knock-in mice resemble the immunohistopathological features of immunoglobulin G4-related disease (IgG4-RD). LatY136F knock-in mice were sacrificed at 4-20 weeks of age, and pancreas, kidney, salivary gland and lung were obtained. All organs were stained with hematoxylin-eosin and with Azan for estimation of collagen in fibrosis, and the severity scores of inflammation and fibrosis were evaluated. Immunostainings were performed to analyze the types of infiltrating cells. In addition, the effects of corticosteroid treatment on the development of tissue lesions and serum levels of IgG1 were assessed. Tissue lesions characterized by inflammatory mononuclear cell infiltration and fibrosis were detected in pancreas, kidney, and salivary gland starting from 6 weeks of age. Immunostainings showed pronounced infiltration of plasma cells, CD4-positive T cells, and macrophages. Infiltrating plasma cells predominantly expressed IgG1. The extent of inflammation in pancreas and salivary glands was markedly reduced by corticosteroid treatment. LatY136F knock-in mice displayed increased production of Th2-type IgG1 (a homologue of human IgG4) and developed multiple organ tissue lesions reminiscent of those seen in patients with IgG4-RD. Moreover, the development of these tissue lesions was highly sensitive to corticosteroid treatment like in IgG4-RD. For these reasons we consider the LatY136F knock-in mouse strain to represent a promising model for human IgG4-RD.
Altered Ig levels and antibody responses in mice deficient for the Fc receptor for IgM (FcμR)
Cell surface Fc receptor for IgM antibody (FcμR) is the most recently identified member among FcRs. We determined the cellular distribution of mouse FcμR and the functional consequences of Fcmr disruption. Surface FcμR expression was restricted to B-lineage cells, from immature B to plasma cells, except for a transient down-modulation during germinal center reactions. Fcmr ablation had no significant effect on overall B- and T-cell development, but led to a reduction of marginal zone B cells and an increase in splenic B1 B cells. Preimmune serum IgM in mutant mice was significantly elevated as were natural autoantibodies. When immunized with live attenuated pneumococci, mutant mice mounted robust antibody responses against phosphorylcholine, but not protein, determinants compared with wild-type mice. By contrast, upon immunization with a hapten-carrier conjugate, nitrophenyl-coupled chicken γ-globulin (NP-CGG), the mutant mice had a diminished primary IgG1 response to both NP and CGG. These findings suggest that FcμR has an important role in IgM homeostasis and regulation of humoral immune responses.
Critical role of galectin-3 in phagocytosis by macrophages
Galectin-3 is a member of a large family of animal lectins. This protein is expressed abundantly by macrophages, but its function in this cell type is not well understood. We have studied the effect of galectin-3 gene targeting on phagocytosis, a major function of macrophages. Compared with wild-type macrophages, galectin-3-deficient (gal3-/-) cells exhibited reduced phagocytosis of IgG-opsonized erythrocytes and apoptotic thymocytes in vitro. In addition, gal3-/- mice showed attenuated phagocytic clearance of apoptotic thymocytes by peritoneal macrophages in vivo. These mice also exhibited reduced IgG-mediated phagocytosis of erythrocytes by Kupffer cells in a murine model of autoimmune hemolytic anemia. Additional experiments indicate that extracellular galectin-3 does not contribute appreciably to the phagocytosis-promoting function of this protein. Confocal microscopic analysis of macrophages containing phagocytosed erythrocytes revealed localization of galectin-3 in phagocytic cups and phagosomes. Furthermore, gal3-/- macrophages exhibited a lower degree of actin rearrangement upon Fcgamma receptor crosslinkage. These results indicate that galectin-3 contributes to macrophage phagocytosis through an intracellular mechanism. Thus, galectin-3 may play an important role in both innate and adaptive immunity by contributing to phagocytic clearance of microorganisms and apoptotic cells.
Investigation into the Presence of and Serological Response to XMRV in CFS Patients
The novel human gammaretrovirus xenotropic murine leukemia virus-related virus (XMRV), originally described in prostate cancer, has also been implicated in chronic fatigue syndrome (CFS). When later reports failed to confirm the link to CFS, they were often criticised for not using the conditions described in the original study. Here, we revisit our patient cohort to investigate the XMRV status in those patients by means of the original PCR protocol which linked the virus to CFS. In addition, sera from our CFS patients were assayed for the presence of xenotropic virus envelope protein, as well as a serological response to it. The results further strengthen our contention that there is no evidence for an association of XMRV with CFS, at least in the UK.
Inositol 1,3,4,5-tetrakisphosphate controls proapoptotic Bim gene expression and survival in B cells
The contribution of the B isoform of inositol 1,4,5-trisphosphate [Ins(1,4,5)P₃] 3-kinase (or Itpkb) and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P₄], its reaction product, to B cell function and development remains unknown. Here, we show that mice deficient in Itpkb have defects in B cell survival leading to specific and intrinsic developmental alterations in the B cell lineage and antigen unresponsiveness in vivo. The decreased B cell survival is associated with a decreased phosphorylation of Erk1/2 and increased Bim gene expression. B cell survival, development, and antigen responsiveness are normalized in parallel to reduced expression of Bim in Itpkb⁻/⁻ Bim⁺/⁻ mice. Analysis of the signaling pathway downstream of Itpkb revealed that Ins(1,3,4,5)P₄ regulates subcellular distribution of Rasa3, a Ras GTPase-activating protein acting as an Ins(1,3,4,5)P₄ receptor. Together, our results indicate that Itpkb and Ins(1,3,4,5)P₄ mediate a survival signal in B cells via a Rasa3-Erk signaling pathway controlling proapoptotic Bim gene expression.
Lat(Y136F) knock-in mouse model for human IgG4-related disease
Background The adaptor protein Linker for activation of T cell (LAT) is a key signaling hub used by the T cell antigen receptor. Mutant mice expressing loss-of-function mutations affecting LAT and including a mutation in which tyrosine 136 is replaced by a phenylalanine (Lat(Y136F)) develop lymphoproliferative disorder involving T helper type 2 effector cells capable of triggering a massive polyclonal B cell activation that leads to hypergammaglobulinemia G1 and E and to non-resolving inflammation and autoimmunity. The purpose of this study was to evaluate whether the phenotypes of Lat(Y136F) knock-in mice resemble the immunohistopathological features of immunoglobulin G4-related disease (IgG4-RD).Methods Lat(Y136F) knock-in mice were sacrificed at 4-20 weeks of age, and pancreas, kidney, salivary gland and lung were obtained. All organs were stained with hematoxylin-eosin and with Azan for estimation of collagen in fibrosis, and the severity scores of inflammation and fibrosis were evaluated. Immunostainings were performed to analyze the types of infiltrating cells. In addition, the effects of corticosteroid treatment on the development of tissue lesions and serum levels of IgG1 were assessed.Results Tissue lesions characterized by inflammatory mononuclear cell infiltration and fibrosis were detected in pancreas, kidney, and salivary gland starting from 6 weeks of age. Immunostainings showed pronounced infiltration of plasma cells, CD4-positive T cells, and macrophages. Infiltrating plasma cells predominantly expressed IgG1. The extent of inflammation in pancreas and salivary glands was markedly reduced by corticosteroid treatment.Conclusions Lat(Y136F) knock-in mice displayed increased production of Th2-type IgG1 (a homologue of human IgG4) and developed multiple organ tissue lesions reminiscent of those seen in patients with IgG4-RD. Moreover, the development of these tissue lesions was highly sensitive to corticosteroid treatment like in IgG4-RD. For these reasons we consider the Lat(Y136F) knock-in mouse strain to represent a promising model for human IgG4-RD.
Involvement of Virus-Induced Interferon Production in IgG Autoantibody-Mediated Anemia
Infection with viruses, such as the lactate dehydrogenase-elevating virus (LDV), is known to trigger the onset of autoimmune anemia through the enhancement of the phagocytosis of autoantibody-opsonized erythrocytes by activated macrophages. Type I interferon receptor-deficient mice show enhanced anemia, which suggests a protective effect of these cytokines, partly through the control of type II interferon production. The development of anemia requires the expression of Fcγ receptors (FcγR) I, III, and IV. Whereas LDV infection decreases FcγR III expression, it enhances FcγR I and IV expression in wild-type animals. The LDV-associated increase in the expression of FcγR I and IV is largely reduced in type I interferon receptor-deficient mice, through both type II interferon-dependent and -independent mechanisms. Thus, the regulation of the expression of FcγR I and IV, but not III, by interferons may partly explain the exacerbating effect of LDV infection on anemia that results from the enhanced phagocytosis of IgG autoantibody-opsonized erythrocytes.
Lat.sup.Y136F knock-in mouse model for human IgG4-related disease
The adaptor protein Linker for activation of T cell (LAT) is a key signaling hub used by the T cell antigen receptor. Mutant mice expressing loss-of-function mutations affecting LAT and including a mutation in which tyrosine 136 is replaced by a phenylalanine (Lat.sup.Y136F) develop lymphoproliferative disorder involving T helper type 2 effector cells capable of triggering a massive polyclonal B cell activation that leads to hypergammaglobulinemia G1 and E and to non-resolving inflammation and autoimmunity. The purpose of this study was to evaluate whether the phenotypes of Lat.sup.Y136F knock-in mice resemble the immunohistopathological features of immunoglobulin G4-related disease (IgG4-RD). Lat.sup.Y136F knock-in mice were sacrificed at 4-20 weeks of age, and pancreas, kidney, salivary gland and lung were obtained. All organs were stained with hematoxylin-eosin and with Azan for estimation of collagen in fibrosis, and the severity scores of inflammation and fibrosis were evaluated. Immunostainings were performed to analyze the types of infiltrating cells. In addition, the effects of corticosteroid treatment on the development of tissue lesions and serum levels of IgG1 were assessed. Tissue lesions characterized by inflammatory mononuclear cell infiltration and fibrosis were detected in pancreas, kidney, and salivary gland starting from 6 weeks of age. Immunostainings showed pronounced infiltration of plasma cells, CD4-positive T cells, and macrophages. Infiltrating plasma cells predominantly expressed IgG1. The extent of inflammation in pancreas and salivary glands was markedly reduced by corticosteroid treatment. Lat.sup.Y136F knock-in mice displayed increased production of Th2-type IgG1 (a homologue of human IgG4) and developed multiple organ tissue lesions reminiscent of those seen in patients with IgG4-RD. Moreover, the development of these tissue lesions was highly sensitive to corticosteroid treatment like in IgG4-RD. For these reasons we consider the Lat.sup.Y136F knock-in mouse strain to represent a promising model for human IgG4-RD.
Control of Separate Pathogenic Autoantibody Responses Marks MHC Gene Contributions to Murine Lupus
Previous studies have suggested that MHC and non-MHC genes contribute to the development of autoimmune disease in F1 hybrids of New Zealand black (NZB) and white (NZW) mice. We conducted a genome-wide screen of 148 female (NZB × NZW)F1 × NZB backcross mice to map dominant NZW genetic loci linked with lupus disease traits. In this backcross analysis, inheritance of the NZW MHC (H2d/z vs. H2d/d) was strongly linked with the development of lupus nephritis (P≈ 1× 10-16), increasing the risk of disease by over 30-fold. H2d/z was also linked with elevated serum levels of IgG autoantibodies to single-stranded DNA, doublestranded DNA, histones, and chromatin but not with anti-gp70 autoantibodies, measured as circulating gp70-anti-gp70 immune complexes. Non-MHC contributions from NZW seemed weak in comparison to MHC, although NZW loci on chromosomes 7 and 16 were noted to be suggestively linked with autoantibody production. Strikingly, H2d/z (compared with H2d/d) enhanced antinuclear antibodies in a coordinate fashion but did not affect anti-gp70 production in the current backcross. However, the opposite influence was noted for H2d/z (compared with H2z/z when (NZB × NZW)F1 × NZW backcross mice were analyzed. These results suggest that H2z and H2d haplotypes differentially regulate two different sets of nephritogenic autoantibody responses. This study confirm a critical role for H2z compared with other dominant NZW loci in (NZB × NZW)F1 mice and provides an explanation as to why H2d/z heterozygosity is required for full expression of disease in this model.