Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
18 result(s) for "Jáuregui-Huerta, Fernando"
Sort by:
Extra-neurohypophyseal axonal projections from individual vasopressin-containing magnocellular neurons in rat hypothalamus
Conventional neuroanatomical, immunohistochemical techniques, and electrophysiological recording, as well as in vitro labeling methods may fail to detect long range extra-neurohypophyseal-projecting axons from vasopressin (AVP)-containing magnocellular neurons (magnocells) in the hypothalamic paraventricular nucleus (PVN). Here, we used in vivo extracellular recording, juxtacellular labeling, post-hoc anatomo-immunohistochemical analysis and camera lucida reconstruction to address this question. We demonstrate that all well-labeled AVP immunopositive neurons inside the PVN possess main axons joining the tract of Greving and multi-axon-like processes, as well as axonal collaterals branching very near to the somata, which project to extra-neurohypophyseal regions. The detected regions in this study include the medial and lateral preoptical area, suprachiasmatic nucleus (SCN), lateral habenula (LHb), medial and central amygdala and the conducting systems, such as stria medullaris, the fornix and the internal capsule. Expression of vesicular glutamate transporter 2 was observed in axon-collaterals. These results, in congruency with several previous reports in the literature, provided unequivocal evidence that AVP magnocells have an uncommon feature of possessing multiple axon-like processes emanating from somata or proximal dendrites. Furthermore, the long-range non-neurohypophyseal projections are more common than an \"occasional\" phenomenon as previously thought.
Early-life exposure to noise reduces mPFC astrocyte numbers and T-maze alternation/discrimination task performance in adult male rats
In this experiment, we evaluated the long-term effects of noise by assessing both astrocyte changes in medial prefrontal cortex (mPFC) and mPFC-related alternation/discrimination tasks. Twenty-one-day-old male rats were exposed during a period of 15 days to a standardized rats′ audiogram-fitted adaptation of a human noisy environment. We measured serum corticosterone (CORT) levels at the end of the exposure and periodically registered body weight gain. In order to evaluate the long-term effects of this exposure, we assessed the rats′ performance on the T-maze apparatus 3 months later. Astrocyte numbers and proliferative changes in mPFC were also evaluated at this stage. We found that environmental noise (EN) exposure significantly increased serum CORT levels and negatively affected the body weight gain curve. Accordingly, enduring effects of noise were demonstrated on mPFC. The ability to solve alternation/discrimination tasks was reduced, as well as the number of astroglial cells. We also found reduced cytogenesis among the mPFC areas evaluated. Our results support the idea that early exposure to environmental stressors may have long-lasting consequences affecting complex cognitive processes. These results also suggest that glial changes may become an important element behind the cognitive and morphological alterations accompanying the PFC changes seen in some stress-related pathologies.
Chronic exposure of juvenile rats to environmental noise impairs hippocampal cell proliferation in adulthood
Increasing evidence indicates that chronic exposure to environmental noise may permanently affect the central nervous system. The aim of this study was to evaluate the long-term effects of early exposure to environmental noise on the hippocampal cell proliferation of the adult male rat. Early-weaned Wistar rats were exposed for 15 days to a rats' audiogram-fitted adaptation to a noisy environment. Two months later, the rats were injected with the cellular proliferation marker 5΄bromodeoxiuridine (BrdU), and their brains were processed for immunohistochemical analysis. Coronal sections were immunolabeled with anti-BrdU antibodies to identify new-born cells in dentate gyrus (DG), cornu amonis areas CA1 and CA3. In addition, blood samples were obtained to evaluate corticosterone serum levels after noise exposure. All data are expressed as mean±standard deviation. For mean comparisons between groups, we used the Student t test. We found an increase in corticosterone serum levels after environmental noise exposure. Interestingly, noise-exposed rats showed a long-term reduction of proliferating cells in the hippocampal formation, as compared to controls. These findings indicate that chronic environmental noise exposure at young ages produces persistent non-auditory impairment that modifies cell proliferation in the hippocampal formation.
Biopsychological correlates of repetitive and restricted behaviors in autism spectrum disorders
Background Autism Spectrum Disorder (ASD) is considered a neurodevelopmental condition that is characterized by alterations in social interaction and communication, as well as patterns of restrictive and repetitive behaviors (RRBs). RRBs are defined as broad behaviors that comprise stereotypies, insistence on sameness, and attachment to objects or routines. RRBs can be divided into lower‐level behaviors (motor, sensory, and object‐manipulation behaviors) and higher‐level behaviors (restrictive interests, insistence on sameness, and repetitive language). According to the DSM‐5, the grade of severity in ASD partially depends on the frequency of RRBs and their consequences for disrupting the life of patients, affecting their adaptive skills, and increasing the need for parental support. Methods We conducted a systematic review to examine the biopsychological correlates of the symptomatic domains of RRBs according to the type of RRBs (lower‐ or higher‐level). We searched for articles from the National Library of Medicine (PubMed) using the terms: autism spectrum disorders, ASD, and autism‐related to executive functions, inhibitory control, inflexibility, cognitive flexibility, hyper or hypo connectivity, and behavioral approaches. For describing the pathophysiological mechanism of ASD, we also included animal models and followed PRISMA guidelines. Results One hundred and thirty‐one articles were analyzed to explain the etiology, continuance, and clinical evolution of these behaviors observed in ASD patients throughout life. Conclusions Biopsychological correlates involved in the origin of RRBs include alterations in a) neurotransmission system, b) brain volume, c) inadequate levels of growth factors, d) hypo‐ or hyper‐neural connectivity, e) impairments in behavioral inhibition, cognitive flexibility, and monitoring and f) non‐stimulating environments. Understanding these lower‐ and higher‐level of RRBs can help professionals to improve or design novel therapeutic strategies. The psychobiological mechanisms that underly lower‐ or higher‐level behaviors in autism spectrum disorders (ASD) are not completely understood. Herein, the neurobiological, neuropsychological, and behavioral evidence that sustains the etiology of these behaviors in the pathogenesis of ASD are summarized.
Immediate Early Gene c-fos in the Brain: Focus on Glial Cells
The c-fos gene was first described as a proto-oncogene responsible for the induction of bone tumors. A few decades ago, activation of the protein product c-fos was reported in the brain after seizures and other noxious stimuli. Since then, multiple studies have used c-fos as a brain activity marker. Although it has been attributed to neurons, growing evidence demonstrates that c-fos expression in the brain may also include glial cells. In this review, we collect data showing that glial cells also express this proto-oncogene. We present evidence demonstrating that at least astrocytes, oligodendrocytes, and microglia express this immediate early gene (IEG). Unlike neurons, whose expression changes used to be associated with depolarization, glial cells seem to express the c-fos proto-oncogene under the influence of proliferation, differentiation, growth, inflammation, repair, damage, plasticity, and other conditions. The collected evidence provides a complementary view of c-fos as an activity marker and urges the introduction of the glial cell perspective into brain activity studies. This glial cell view may provide additional information related to the brain microenvironment that is difficult to obtain from the isolated neuron paradigm. Thus, it is highly recommended that detection techniques are improved in order to better differentiate the phenotypes expressing c-fos in the brain and to elucidate the specific roles of c-fos expression in glial cells.
Male/female Differences in Radial Arm Water Maze Execution After Chronic Exposure to Noise
Introduction: Noise is one of the main sources of discomfort in modern societies. It affects physiology, behavior, and cognition of exposed subjects. Although the effects of noise on cognition are well known, gender role in noise-cognition relationship remains controversial. Aim: We analyzed the effects of noise on the ability of male and female rats to execute the Radial Arm Water Maze (RAWM) paradigm. Materials and Methods: Male and female Wistar rats were exposed to noise for 3 weeks, and the cognitive effects were assessed at the end of the exposure. RAWM execution included a three-day training phase and a reversal-learning phase conducted on the fourth day. Escape latency, reference memory errors, and working memory errors were quantified and compared between exposed and non-exposed subjects. Results: We found that male rats were in general more affected by noise. Execution during the three-day learning phase evidenced that male exposed rats employed significantly more time to acquire the task than the non-exposed. On the other hand, the exposed females solved the paradigm in latencies similar to control rats. Both, males and females diminished their capacity to execute on the fourth day when re-learning abilities were tested. Conclusion: We conclude that male rats might be less tolerable to noise compared to female ones and that spatial learning may be a cognitive function comparably more vulnerable to noise.
Inhibitory control failures and blunted cortisol response to psychosocial stress in amphetamine consumers after 6 months of abstinence
Background: Amphetamine abuse has been conceived as an addictive illness where stress regulation and inhibitory control may be crucial factors determining chronicity and relapse. Since amphetamine consumption may disrupt the cerebral systems regulating inhibition and stress behaviors, deregulation on these systems may be expected even after long-term abstinence periods. The present study aimed to evaluate the ability of abstinent amphetamine consumers to regulate stress parameters and to inhibit cognitive patterns under the acute trier social stress test (TSST) paradigm. Materials and Methods: A cohort study was conducted in a sample of 44 young individuals (average age: 24.6 years). The sample included 22 amphetamine consumers recruited from an addiction treatment center and 22 healthy nonconsumers belonging to the same sociodemographic conditions. Both groups were exposed to the TSST once the consumers completed 6 months in abstinence. To evaluate stress reactivity, we collected five saliva samples distributed before, during, and after stress exposure. Inhibitory capacity was also assessed before and after stress using the Stroop and d2 cancellation tests. Results: Under stress conditions, cortisol measures were significantly lower in amphetamine consumers (1105.34 ± 756.958) than in healthy nonconsumers (1771.86 ± 1174.248) P = 0.022. Without stress, amphetamine consumers also showed lower cortisol values (1027.61 ± 709.8) than nonconsumers (1844.21 ± 1099.15) P = 0.016. Regarding inhibitory capacity, stress also was associated to consumer's lower scores on the Stroop (5.17 ± 8.34 vs. 10.58 ± 7.83) P = 0.032 and d2 tests (190.27 ± 29.47 vs. 218.00 ± 38.08) P = 0.010. Conclusion: We concluded that both the stress regulatory system and executive function system (attentional/inhibitory control) represent key vulnerability conditions to the long-term effect of compulsive amphetamine consumption.
Morphological Signatures of Neurogenesis and Neuronal Migration in Hypothalamic Vasopressinergic Magnocellular Nuclei of the Adult Rat
The arginine vasopressin (AVP)-magnocellular neurosecretory system (AVPMNS) in the hypothalamus plays a critical role in homeostatic regulation as well as in allostatic motivational behaviors. However, it remains unclear whether adult neurogenesis exists in the AVPMNS. By using immunoreaction against AVP, neurophysin II, glial fibrillar acidic protein (GFAP), cell division marker (Ki67), migrating neuroblast markers (doublecortin, DCX), microglial marker (Ionized calcium binding adaptor molecule 1, Iba1), and 5′-bromo-2′-deoxyuridine (BrdU), we report morphological evidence that low-rate neurogenesis and migration occur in adult AVPMNS in the rat hypothalamus. Tangential AVP/GFAP migration routes and AVP/DCX neuronal chains as well as ascending AVP axonal scaffolds were observed. Chronic water deprivation significantly increased the BrdU+ nuclei within both the supraaoptic (SON) and paraventricular (PVN) nuclei. These findings raise new questions about AVPMNS’s potential hormonal role for brain physiological adaptation across the lifespan, with possible involvement in coping with homeostatic adversities.
K252a Prevents Microglial Activation Induced by Anoxic Stimulation of Carotid Bodies in Rats
Inducing carotid body anoxia through the administration of cyanide can result in oxygen deprivation. The lack of oxygen activates cellular responses in specific regions of the central nervous system, including the Nucleus Tractus Solitarius, hypothalamus, hippocampus, and amygdala, which are regulated by afferent pathways from chemosensitive receptors. These receptors are modulated by the brain-derived neurotrophic factor receptor TrkB. Oxygen deprivation can cause neuroinflammation in the brain regions that are activated by the afferent pathways from the chemosensitive carotid body. To investigate how microglia, a type of immune cell in the brain, respond to an anoxic environment resulting from the administration of NaCN, we studied the effects of blocking the TrkB receptor on this cell-type response. Male Wistar rats were anesthetized, and a dose of NaCN was injected into their carotid sinus to induce anoxia. Prior to the anoxic stimulus, the rats were given an intracerebroventricular (icv) infusion of either K252a, a TrkB receptor inhibitor, BDNF, or an artificial cerebrospinal fluid (aCSF). After the anoxic stimulus, the rats were perfused with paraformaldehyde, and their brains were processed for microglia immunohistochemistry. The results indicated that the anoxic stimulation caused an increase in the number of reactive microglial cells in the hypothalamic arcuate, basolateral amygdala, and dentate gyrus of the hippocampus. However, the infusion of the K252a TrkB receptor inhibitor prevented microglial activation in these regions.
Environmental noise exposure modifies astrocyte morphology in hippocampus of young male rats
Chronic exposure to noise induces changes on the central nervous system of exposed animals. Those changes affect not only the auditory system but also other structures indirectly related to audition. The hippocampus of young animals represents a potential target for these effects because of its essential role in individuals' adaptation to environmental challenges. The aim of the present study was to evaluate hippocampus vulnerability, assessing astrocytic morphology in an experimental model of environmental noise (EN) applied to rats in pre-pubescent stage. Weaned Wistar male rats were subjected to EN adapted to the rats' audiogram for 15 days, 24 h daily. Once completed, plasmatic corticosterone (CORT) concentration was quantified, and immunohistochemistry for glial fibrillary acidic protein was taken in hippocampal DG, CA3, and CA1 subareas. Immunopositive cells and astrocyte arborizations were counted and compared between groups. The rats subjected to noise exhibited enlarged length of astrocytes arborizations in all hippocampal subareas. Those changes were accompanied by a marked rise in serum CORT levels. These findings confirm hippocampal vulnerability to EN and suggest that glial cells may play an important role in the adaptation of developing the participants to noise exposure.