Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
256 result(s) for "JEONG, JU-YEON"
Sort by:
Immune gene signatures for predicting durable clinical benefit of anti-PD-1 immunotherapy in patients with non-small cell lung cancer
Immune checkpoint blockade is promising for treating non-small-cell lung cancer (NSCLC). We used multipanel markers to predict the response to immune checkpoint inhibitors (ICIs) by characterizing gene expression signatures or individual genes in patients who showed durable clinical benefit to ICIs. Twenty-one patients with NSCLC treated with single-agent anti-programmed cell death protein (PD)-1 antibody were analyzed and their clinicopathological characteristics and response to ICIs were characterized. Nine (43%) showed a durable clinical benefit (DCB), while the remaining 12 (57%) patients showed non-durable benefit (NDB). The M1 and peripheral T cell signatures showed the best performance for discriminating DCB from NDB (sensitivity, specificity, accuracy = 0.89, 1.0, 0.95, respectively). Progression-free survival (PFS) was significantly longer in patients with high M1 signature or high peripheral T cell signature scores. CD137 and PSMB9 mRNA expression was higher in the DCB group than in the NDB group. Patients with high PSMB9 expression showed longer PFS. M1 signature, peripheral T cell signature and high mRNA expression level of CD137 and PSMB9 showed better predictive performance than known biomarkers, such as PD-L1 immunohistochemistry, tumor mutation burden, or tumor-infiltrating lymphocytes.
Detailed Building Energy Impact Analysis of XPS Insulation Degradation Using Existing Long-Term Experimental Data
This study investigates the long-term impact of insulation degradation on building heating energy consumption, with a focus on extruded polystyrene (XPS) insulation. Year-by-year degradation in thermal transmittance was derived from long-term experimental data and applied to prototypical energy models of multifamily apartment buildings and office buildings. Simulations were performed using both Actual Meteorological Year (AMY) and Typical Meteorological Year (TMY) data for six cities representing Korea’s major climate zones. The results showed that insulation degradation led to a significant increase in heating energy consumption from 23.2% to 34.9% in AMY simulations and 23.5% to 36.2% in TMY simulations for multifamily apartment buildings over 15 years. The difference between the AMY and TMY estimates was within 4%, demonstrating the reliability of TMY for long-term performance assessments. Notably, the southern and Jeju zones exhibited higher sensitivity to degradation due to their relaxed insulation standards and lower initial thermal performance. Office buildings were less affected, with increases below 8%, attributed to smaller envelope areas and higher internal heat gains. These findings highlight the need for zone-specific insulation standards and differentiated energy-saving design strategies by building type to ensure long-term energy efficiency.
miR-22-3p and miR-30e-5p Are Associated with Prognosis in Cervical Squamous Cell Carcinoma
Alteration in expression of miRNAs can cause various malignant changes and the metastatic process. Our aim was to identify the miRNAs involved in cervical squamous cell carcinoma (SqCC) and metastasis, and to test their utility as indicators of metastasis and survival. Using microarray technology, we performed miRNA expression profiling on primary cervical SqCC tissue (n = 6) compared with normal control (NC) tissue and compared SqCC that had (SqC-M; n = 3) and had not (SqC-NM; n = 3) metastasized. Four miRNAs were selected for validation by qRT-PCR on 29 SqC-NM and 27 SqC-M samples, and nine metastatic lesions (ML-SqC), from a total of 56 patients. Correlation of miRNA expression and clinicopathological parameters was analyzed to evaluate the clinical impact of candidate miRNAs. We found 40 miRNAs differentially altered in cervical SqCC tissue: 21 miRNAs were upregulated and 19 were downregulated (≥2-fold, p < 0.05). Eight were differentially altered in SqC-M compared with SqC-NM samples: four were upregulated (miR-494, miR-92a-3p, miR-205-5p, and miR-221-3p), and four were downregulated (miR-574-3p, miR-4769-3p, miR-1281, and miR-1825) (≥1.5-fold, p < 0.05). MiR-22-3p might be a metastamiR, which was gradually further downregulated in SqC-NM > SqC-M > ML-SqC. Downregulation of miR-30e-5p significantly correlated with high stage, lymph node metastasis, and low survival rate, suggesting an independent poor prognostic factor.
Identification of Prognostic Biomarkers of Ovarian High-Grade Serous Carcinoma: A Preliminary Study Using Spatial Transcriptome Analysis and Multispectral Imaging
Ovarian cancer is a lethal malignancy, with most patients initially responding to chemotherapy but frequently experiencing recurrence. Previous studies primarily examined tumor characteristics using limited genetic markers or bulk RNA sequencing. Here, we used spatial transcriptomics via the GeoMx® platform, alongside multispectral immune cell immunofluorescence (IF), to identify biomarkers associated with disease progression following first-line treatment of high-grade serous carcinoma (HGSC). We identified several spatial biomarkers linked to non-recurrence, including elevated NKG7 expression in CD45+ immune cell regions (p = 0.0011) and higher TFPI2 and PIGR expression in tumor areas (p = 2.09 × 10−6), both associated with improved progression-free survival. Multispectral IF revealed significantly higher regulatory T cell (Treg) to CD8+ T cell ratios in the tumor nests and stroma of recurrent patients (p = 0.016, 0.048). Tregs were also found closer to cancer cells or macrophages than CD8+ T cells in recurrent tumors (p = 0.048), correlating with poor survival. Integrated analysis showed that immune cell density and immune pathway scores in the recurrent group positively correlated with cancer pathway scores, except for NF-κB. This comprehensive analysis revealed clues to interactions between different immune cells and identified biomarkers that may be useful for predicting recurrence of HGSC.
USP19 and RPL23 as Candidate Prognostic Markers for Advanced-Stage High-Grade Serous Ovarian Carcinoma
Ovarian cancer is one of the leading causes of deaths among patients with gynecological malignancies worldwide. In order to identify prognostic markers for ovarian cancer, we performed RNA-sequencing and analyzed the transcriptome data from 51 patients who received conventional therapies for high-grade serous ovarian carcinoma (HGSC). Patients with early-stage (I or II) HGSC exhibited higher immune gene expression than patients with advanced stage (III or IV) HGSC. In order to predict the prognosis of patients with HGSC, we created machine learning-based models and identified USP19 and RPL23 as candidate prognostic markers. Specifically, patients with lower USP19 mRNA levels and those with higher RPL23 mRNA levels had worse prognoses. This model was then used to analyze the data of patients with HGSC hosted on The Cancer Genome Atlas; this analysis validated the prognostic abilities of these two genes with respect to patient survival. Taken together, the transcriptome profiles of USP19 and RPL23 determined using a machine-learning model could serve as prognostic markers for patients with HGSC receiving conventional therapy.
Experimental and Finite Element-Based Investigation on Lateral Behaviors of a Novel Hybrid Monopile
A monopile is the most conventional structure foundation for offshore wind turbines (OWTs) in the world. However, the Korean offshore wind industry has mostly been using the jacket type of foundation. The main reason for the current situation in Korea is that most of the marine soil consists of weak layers of sand and clay. Thus, the monopile foundation depth has to be deep enough to satisfy the intended serviceability design requirement of the monopile and the rotation limit at the seabed; a conventional monopile design concept alone might be insufficient in Korean offshore conditions, or otherwise could be very expensive, e.g., resulting in a rock socket installation at the tip of the monopile. The main objective of this paper is to introduce a novel hybrid monopile that is composed of a monopile and a supplemental support with three buckets, followed by assessing the lateral resistance of the hybrid system through physical experiments and finite element (FE) simulations. Namely, 1/64.5 small-scaled monopile and hybrid physical models with a monopile diameter of 7 m for a 5.5 MW OWT were loaded monotonically. The results show that the hybrid monopile improves the lateral bearing capacity regarding the initial lateral stiffness and ultimate load. The FE analyses of the corresponding physical models were also implemented to support the results from the physical model test. The numerical results, such as the structural member forces and soil deformation, were analyzed in detail. Additionally, a case study using FE analysis was conducted for the 5.5 MW OWT hybrid monopile support installed in a representative Korean weak soil area. The results show that the hybrid monopile foundation has a larger lateral resistance and stiffness than the monopile.
The Effect of Low-Dose Dexmedetomidine on Pain and Inflammation in Patients Undergoing Laparoscopic Hysterectomy
Dexmedetomidine has sedative, sympatholytic, analgesic, and anti-inflammatory effects. We investigated the effects of intraoperative dexmedetomidine infusion without a loading dose in the prevention of pain and inflammation after laparoscopic hysterectomy. In this study, 100 patients undergoing laparoscopic hysterectomy under desflurane anesthesia were randomized to receive either 0.9% saline or dexmedetomidine (0.4 μg/kg/h) after induction to trocar removal. The primary endpoints were postoperative pain and inflammatory response presented by the level of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-10, and C-reactive protein (CRP). The secondary endpoints were hemodynamics during the anesthesia and surgery and postoperative nausea and vomiting. Postoperative pain was decreased in the dexmedetomidine group for every time point, and post-anesthesia care unit (PACU) rescue fentanyl doses were decreased in the dexmedetomidine group. The inflammatory response representing TNF-α, IL-6, IL-10, and CRP were similar across the two groups. Postoperative nausea and vomiting from PACU discharge to 24 h post-surgery were reduced in the dexmedetomidine group. During anesthesia and surgery, the patient’s heart rate was maintained lower in the dexmedetomidine-receiving group. Dexmedetomidine of 0.4 μg/kg/h given as an intraoperative infusion significantly reduced postoperative pain but did not reduce the inflammatory responses in patients undergoing laparoscopic hysterectomy.
Predictive biomarkers for the responsiveness of recurrent glioblastomas to activated killer cell immunotherapy
Background Recurrent glioblastoma multiforme (GBM) is a highly aggressive primary malignant brain tumor that is resistant to existing treatments. Recently, we reported that activated autologous natural killer (NK) cell therapeutics induced a marked increase in survival of some patients with recurrent GBM. Methods To identify biomarkers that predict responsiveness to NK cell therapeutics, we examined immune profiles in tumor tissues using NanoString nCounter analysis and compared the profiles between 5 responders and 7 non-responders. Through a three-step data analysis, we identified three candidate biomarkers ( TNFRSF18 , TNFSF4 , and IL12RB2 ) and performed validation with qRT-PCR. We also performed immunohistochemistry and a NK cell migration assay to assess the function of these genes. Results Responders had higher expression of many immune-signaling genes compared with non-responders, which suggests an immune-active tumor microenvironment in responders. The random forest model that identified TNFRSF18 , TNFSF4 , and IL12RB2 showed a 100% accuracy (95% CI 73.5–100%) for predicting the response to NK cell therapeutics. The expression levels of these three genes by qRT-PCR were highly correlated with the NanoString levels, with high Pearson’s correlation coefficients (0.419 ( TNFRSF18 ), 0.700 ( TNFSF4 ), and 0.502 ( IL12RB2 )); their prediction performance also showed 100% accuracy (95% CI 73.54–100%) by logistic regression modeling. We also demonstrated that these genes were related to cytotoxic T cell infiltration and NK cell migration in the tumor microenvironment. Conclusion We identified TNFRSF18 , TNFSF4 , and IL12RB2 as biomarkers that predict response to NK cell therapeutics in recurrent GBM, which might provide a new treatment strategy for this highly aggressive tumor.
Immortalization of primary marmoset skin fibroblasts by CRISPR-Cas9-mediated gene targeting
Immortalized cell lines can be used for diverse in vitro experiments, providing invaluable data before conducting in vivo studies Callithrix jacchus, the common marmoset, is a non-human primate model utilized for studying various human diseases. However, only a few immortalized marmoset cell lines are currently available. In the present study, we reveal that CRISPR-Cas9-mediated targeting of the p53 gene or CDKN2A locus is an effective means for immortalizing primary marmoset skin fibroblasts. In addition to frameshift mutations that result in premature stop codons, in-frame mutations potentially destroying the DNA-binding motif of p53 are frequently detected in immortalized cells. Like Cdkn2a-deficient mouse cells, CDKN2A-deficient marmoset cells express wild-type p53 proteins normally respond to genotoxic stresses, including adriamycin and etoposide. Taken together, these findings indicate that Cas9- mediated gene targeting of the p53 gene or CDKN2A locus is an effective tool for establishing immortalized marmoset cell lines with defined genetic alterations.
Biotransformation of 2-keto-4-hydroxybutyrate via aldol condensation using an efficient and thermostable carboligase from Deinococcus radiodurans
The bioconversion of 4-hydroxy-2-keto acid derivatives via aldol condensation of formaldehyde and pyruvate has received substantial attention as potential source of chemicals for production of amino acids, hydroxy carboxylic acids, and chiral aldehydes. We developed an environmentally friendly biocatalyst consisting of a novel thermostable class II pyruvate aldolase from Deinococcus radiodurans with maltose-binding protein (MBP-DrADL), which has specific activity of 46.3 µmol min–1 mg–1. Surprisingly, MBP-DrADL maintained over 60% of enzyme activity for 4 days at 50 to 65 °C, we used MBP-DrADL as the best candidate enzyme to produce 2-keto-4-hydroxybutyrate (2-KHB) from formaldehyde and pyruvate via aldol condensation. The optimum reaction conditions for 2-KHB production were 50 °C, pH 8.0, 5 mM Mg2+, 100 mM formaldehyde, and 200 mM pyruvate. Under these optimized conditions, MBP-DrADL produced 76.5 mM (8.94 g L–1) 2-KHB over 60 min with a volumetric productivity of 8.94 g L–1 h–1 and a specific productivity of 357.6 mg mg-enzyme–1 h–1. Furthermore, 2-KHB production was improved by continuous addition of substrates, which produced approximately 124.8 mM (14.6 g L–1) of 2-KHB over 60 min with a volumetric productivity and specific productivity of 14.6 g L–1 h–1 and 583.4 mg mg-enzyme–1 h–1, respectively. MBP-DrADL showed the highest specific productivity for 2-KHB production yet reported. Our study provides a highly efficient biocatalyst for the synthesis of 2-KHB and lays the foundation for large-scale production and application of high-value compounds from formaldehyde.