Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
7 result(s) for "Jachim, Sarah K."
Sort by:
Characterization of cellular senescence in aging skeletal muscle
Senescence is a cell fate that contributes to multiple aging-related pathologies. Despite profound age-associated changes in skeletal muscle (SkM), whether its constituent cells are prone to senesce has not been methodically examined. Herein, using single cell and bulk RNA-sequencing and complementary imaging methods on SkM of young and old mice, we demonstrate that a subpopulation of old fibroadipogenic progenitors highly expresses together with multiple senescence-related genes and, concomitantly, exhibits DNA damage and chromatin reorganization. Through analysis of isolated myofibers, we also detail a senescence phenotype within a subset of old cells, governed instead by . Administration of a senotherapeutic intervention to old mice countered age-related molecular and morphological changes and improved SkM strength. Finally, we found that the senescence phenotype is conserved in SkM from older humans. Collectively, our data provide compelling evidence for cellular senescence as a hallmark and potentially tractable mediator of SkM aging.
Biomarkers of cellular senescence in idiopathic pulmonary fibrosis
Background Cellular senescence is a cell fate in response to diverse forms of age-related damage and stress that has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). The associations between circulating levels of candidate senescence biomarkers and disease outcomes have not been specifically studied in IPF. In this study we assessed the circulating levels of candidate senescence biomarkers in individuals affected by IPF and controls and evaluated their ability to predict disease outcomes. Methods We measured the plasma concentrations of 32 proteins associated with senescence in Lung Tissue Research Consortium participants and studied their relationship with the diagnosis of IPF, parameters of pulmonary and physical function, health-related quality of life, mortality, and lung tissue expression of P16 , a prototypical marker of cellular senescence. A machine learning approach was used to evaluate the ability of combinatorial biomarker signatures to predict disease outcomes. Results The circulating levels of several senescence biomarkers were significantly elevated in persons affected by IPF compared to controls. A subset of biomarkers accurately classified participants as having or not having the disease and was significantly correlated with measures of pulmonary function, health-related quality of life and, to an extent, physical function. An exploratory analysis revealed senescence biomarkers were also associated with mortality in IPF participants. Finally, the plasma concentrations of several biomarkers were associated with their expression levels in lung tissue as well as the expression of P16 . Conclusions Our results suggest that circulating levels of candidate senescence biomarkers are informative of disease status, pulmonary and physical function, and health-related quality of life. Additional studies are needed to validate the combinatorial biomarkers signatures that emerged using a machine learning approach.
A single-center assessment of mental health and well-being in a biomedical sciences graduate program
A diversity of factors influence student mental health, arguing for the importance of longitudinal monitoring of, and accountability for, student mental health at graduate institutions.
An Unbiased Cell‐Culture Selection Yields DNA Aptamers as Novel Senescent Cell‐Specific Reagents
Cellular senescence is an irreversible form of cell‐cycle arrest caused by excessive stress or damage. While various biomarkers of cellular senescence have been proposed, there are currently no universal, stand‐alone indicators of this condition. The field largely relies on the combined detection of multiple biomarkers to differentiate senescent cells from non‐senescent cells. Here we introduce a new approach: unbiased cell culture selections to identify senescent cell‐specific folded DNA aptamers from vast libraries of trillions of random 80‐mer DNAs. Senescent mouse adult fibroblasts and their non‐senescent counterparts were employed for selection. We demonstrate aptamer specificity for senescent mouse cells in culture, identify a form of fibronectin as the molecular target of two selected aptamers, show increased aptamer staining in naturally aged mouse tissues, and demonstrate decreased aptamer staining when p16 expressing cells are removed in a transgenic INK‐ATTAC mouse model. This work demonstrates the value of unbiased cell‐based selections to identify new senescence‐specific DNA reagents. Pearson et al. report the selection of DNA aptamers against senescent mouse cells, demonstrating broad binding specificity for multiple senescent mouse cell types and induction methods. Two of the aptamers bind a form of fibronectin with sub‐nanomolar affinity even in complex protein mixtures. One aptamer detects age‐ and senescence‐associated changes in mouse lung tissue, highlighting the ability of DNA aptamer selection against a senescence phenotype to generate powerful new reagents with the potential to detect or target senescent cells.
An unbiased cell-culture selection yields DNA aptamers as novel senescent cell-specific reagents
Cellular senescence is an irreversible form of cell-cycle arrest caused by excessive stress or damage. While various biomarkers of cellular senescence have been proposed, there are currently no universal, stand-alone indicators of this condition. The field largely relies on the combined detection of multiple biomarkers to differentiate senescent cells from non-senescent cells. Here we introduce a new approach: unbiased cell culture selections to identify senescent cell-specific folded DNA aptamers from vast libraries of trillions of random 80-mer DNAs. Senescent mouse adult fibroblasts and their non-senescent counterparts were employed for selection. We demonstrate aptamer specificity for senescent mouse cells in culture, identify a form of fibronectin as the molecular target of two selected aptamers, show increased aptamer staining in naturally aged mouse tissues, and demonstrate decreased aptamer staining when p16 expressing cells are removed in a transgenic mouse model. This work demonstrates the value of unbiased cell-based selections to identify new senescence-specific DNA reagents.
The senescence-associated secretome as an indicator of age and medical risk
Produced by senescent cells, the senescence-associated secretory phenotype (SASP) is a potential driver of age-related dysfunction. We tested whether circulating concentrations of SASP proteins reflect age and medical risk in humans. We first screened senescent endothelial cells, fibroblasts, preadipocytes, epithelial cells, and myoblasts to identify candidates for human profiling. We then tested associations between circulating SASP proteins and clinical data from individuals throughout the life span and older adults undergoing surgery for prevalent but distinct age-related diseases. A community-based sample of people aged 20-90 years (retrospective cross-sectional) was studied to test associations between circulating SASP factors and chronological age. A subset of this cohort aged 60-90 years and separate cohorts of older adults undergoing surgery for severe aortic stenosis (prospective longitudinal) or ovarian cancer (prospective case-control) were studied to assess relationships between circulating concentrations of SASP proteins and biological age (determined by the accumulation of age-related health deficits) and/or postsurgical outcomes. We showed that SASP proteins were positively associated with age, frailty, and adverse postsurgery outcomes. A panel of 7 SASP factors composed of growth differentiation factor 15 (GDF15), TNF receptor superfamily member 6 (FAS), osteopontin (OPN), TNF receptor 1 (TNFR1), ACTIVIN A, chemokine (C-C motif) ligand 3 (CCL3), and IL-15 predicted adverse events markedly better than a single SASP protein or age. Our findings suggest that the circulating SASP may serve as a clinically useful candidate biomarker of age-related health and a powerful tool for interventional human studies.
HD-PTP/PTPN23 hypomorphic mice display lipodystrophy
Endosomal Sorting Complexes Required for Transport (ESCRTs) drive reverse topology membrane remodeling events including the formation of intralumenal vesicles within multivesicular bodies, the budding of retroviruses from the plasma membrane, and the scission of the cytokinetic bridge. It has been difficult to study the physiological relevance of this machinery in mammals because many contributing components are essential for viability. To bypass this problem we used combinations of knockout (−), hypomorphic (H) and wildtype (+) alleles to generate a series of mice with a gradual reduction of HD-PTP (product of PTPN23), an ESCRT-associated protein known to cause embryonic lethality when fully depleted. Whereas PTPN23-/H mice died shortly after birth, PTPN23H/H mice developed into adulthood but had reduced size, lipodystrophy, and shortened lifespan. Analysis of 14-day inguinal adipose tissue indicated reduced expression of adipogenesis markers, and PTPN23 knockout preadipocytes similarly display reduced adipogenesis in vitro. Defects in insulin-stimulated signaling were apparent in differentiated PTPN23 knockout adipocytes and PTPN23H/H inguinal adipose tissue in vitro, correlating with reduced levels of insulin signaling hallmarks observed in adult PTPN23H/H inguinal adipose tissue in vivo. Whereas the ESCRT machinery have been suggested to downregulate signaling, these results indicate that HD-PTP promotes insulin-induced signaling in, as well as differentiation of, inguinal adipose tissue. These results revealed unexpected roles for HD-PTP in promoting fat accumulation in mammalian cells through supporting insulin signaling, adipogenesis, and lipid droplet formation.