Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
254 result(s) for "Jackson, Louise E."
Sort by:
Ecological intensification and arbuscular mycorrhizas: a meta-analysis of tillage and cover crop effects
1. Reliance on ecosystem services instead of synthetic, non-renewable inputs is increasingly seen as key to achieving food security in an environmentally sustainable way. This process, known as ecological intensification, will depend in large part on enhancing below-ground biological interactions that facilitate resource use efficiency. Arbuscular mycorrhizas (AM), associations formed between the roots of most terrestrial plant species and a specialized group of soil fungi, provide valuable ecosystem services, but the full magnitude of these services may not be fully realized under conventional intensively managed annual agricultural systems. 2. Here, we use meta-analysis to assess how reducing soil disturbance and periods without roots in agricultural systems affect the formation of AM and the diversity and community composition of arbuscular mycorrhizal fungi (AMF). We compiled data from 54 field studies across five continents that measured effects of tillage and/or cover cropping on AMF colonization and/or communities and assessed effects of management and environmental factors on these responses. 3. Less intensive tillage and winter cover cropping similarly increased AMF colonization of summer annual cash crop roots by ~30%. The key variables influencing the change in AMF colonization were the type of cover crop or the type of alternative tillage, suggesting that farmers can optimize combinations of tillage and cover crops that most enhance AM formation, particularly with no-till systems and legume cover crops. 4. Richness of AMF taxa increased by 11% in low-intensity vs. conventional tillage regimes. Several studies showed changes in diversity and community composition of AMF with cover cropping, but these responses were not consistent. 5. Synthesis and applications. This meta-analysis indicates that less intensive tillage and cover cropping are both viable strategies for enhancing root colonization from indigenous arbuscular mycorrhizal fungi (AMF) across a wide range of soil types and cash crop species, and possibly also shifting AMF community structure, which could in turn increase biologically based resource use in agricultural systems.
Global and Local Concerns: What Attitudes and Beliefs Motivate Farmers to Mitigate and Adapt to Climate Change?
In response to agriculture's vulnerability and contribution to climate change, many governments are developing initiatives that promote the adoption of mitigation and adaptation practices among farmers. Since most climate policies affecting agriculture rely on voluntary efforts by individual farmers, success requires a sound understanding of the factors that motivate farmers to change practices. Recent evidence suggests that past experience with the effects of climate change and the psychological distance associated with people's concern for global and local impacts can influence environmental behavior. Here we surveyed farmers in a representative rural county in California's Central Valley to examine how their intention to adopt mitigation and adaptation practices is influenced by previous climate experiences and their global and local concerns about climate change. Perceived changes in water availability had significant effects on farmers' intention to adopt mitigation and adaptation strategies, which were mediated through global and local concerns respectively. This suggests that mitigation is largely motivated by psychologically distant concerns and beliefs about climate change, while adaptation is driven by psychologically proximate concerns for local impacts. This match between attitudes and behaviors according to the psychological distance at which they are cognitively construed indicates that policy and outreach initiatives may benefit by framing climate impacts and behavioral goals concordantly; either in a global context for mitigation or a local context for adaptation.
How does tillage intensity affect soil organic carbon? A systematic review
Background: The loss of carbon (C) from agricultural soils has been, in part, attributed to tillage, a common prac‑ tice providing a number of benefits to farmers. The promotion of less intensive tillage practices and no tillage (NT) (the absence of mechanical soil disturbance) aims to mitigate negative impacts on soil quality and to preserve soil organic carbon (SOC). Several reviews and meta‑analyses have shown both beneficial and null effects on SOC due to no tillage relative to conventional tillage, hence there is a need for a comprehensive systematic review to answer the question: what is the impact of reduced tillage intensity on SOC? Methods: We systematically reviewed relevant research in boreo‑temperate regions using, as a basis, evidence iden‑ tified within a recently completed systematic map on the impacts of farming on SOC. We performed an update of the original searches to include studies published since the map search. We screened all evidence for relevance according to predetermined inclusion criteria. Studies were appraised and subject to data extraction. Meta‑analyses were per‑ formed to investigate the impact of reducing tillage [from high (HT) to intermediate intensity (IT), HT to NT, and from IT to NT] for SOC concentration and SOC stock in the upper soil and at lower depths. Results: A total of 351 studies were included in the systematic review: 18% from an update of research published in the 2 years since the systematic map. SOC concentration was significantly higher in NT relative to both IT [1.18 g/ kg ± 0.34 (SE)] and HT [2.09 g/kg ± 0.34 (SE)] in the upper soil layer (0–15 cm). IT was also found to be significant higher [1.30 g/kg ± 0.22 (SE)] in SOC concentration than HT for the upper soil layer (0–15 cm). At lower depths, only IT SOC compared with HT at 15–30 cm showed a significant difference; being 0.89 g/kg [± 0.20 (SE)] lower in intermedi‑ ate intensity tillage. For stock data NT had significantly higher SOC stocks down to 30 cm than either HT [4.61 Mg/ ha ± 1.95 (SE)] or IT [3.85 Mg/ha ± 1.64 (SE)]. No other comparisons were significant. Conclusions: The transition of tilled croplands to NT and conservation tillage has been credited with substantial potential to mitigate climate change via C storage. Based on our results, C stock increase under NT compared to HT was in the upper soil (0–30 cm) around 4.6 Mg/ha (0.78–8.43 Mg/ha, 95% CI) over ≥ 10 years, while no effect was detected in the full soil profile. The results support those from several previous studies and reviews that NT and IT increase SOC in the topsoil. Higher SOC stocks or concentrations in the upper soil not only promote a more produc‑ tive soil with higher biological activity but also provide resilience to extreme weather conditions. The effect of tillage practices on total SOC stocks will be further evaluated in a forthcoming project accounting for soil bulk densities and crop yields. Our findings can hopefully be used to guide policies for sustainable management of agricultural soils.
Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape
How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid.
Plant diversity and generation of ecosystem services at the landscape scale: expert knowledge assessment
1. In spite of the increasing amount of experimental evidence on the importance of plant species richness for ecosystem functioning at local scales, its role on the generation of ecosystem services at scales relevant for management is still largely unknown. To foster research on this topic, we assessed expert knowledge on the role of plant diversity in the generation of services at the landscape scale. 2. We developed a survey that included three levels of organization and seven components of plant diversity; four provisioning, six regulating and four cultural services; as well as three resources and three conditions among key abiotic factors that are likely to provide a contribution to service generation equalling that of plant diversity. Eighty experts in areas of biodiversity, ecosystem functioning and services answered the survey. 3. The experts identified species diversity within a community and diversity of communities within the landscape as the most important levels of organization for service generation, both with positive effects. Composition and number of species were considered to be the most relevant components of plant diversity, the latter with a positive effect on services. Water availability was identified as the most important abiotic resource. 4. Our results suggest different approaches to management for sustaining the generation of services at the landscape scale. Provisioning services were perceived as largely influenced by abiotic resources and less so (although positively) by plant diversity. Regulating services were expected to strongly depend on both plant diversity and abiotic factors. A particularly strong positive effect of plant diversity was expected for the generation of cultural services. Some variation in answers could be attributed to expert background. 5. Synthesis and applications. The expert survey generated detailed information and new hypotheses on the relationship between plant diversity and services at the landscape scale. Future research is needed to test these hypotheses, yet the areas of agreement identified in this study can be used immediately, with caution, as synthetic expert knowledge at spatial scales that are relevant for management, to guide technological and policy interventions ensuring the maintenance of biodiversity and ecosystem service delivery.
Land use and climatic factors structure regional patterns in soil microbial communities
Although patterns are emerging for macroorganisms, we have limited understanding of the factors determining soil microbial community composition and productivity at large spatial extents. The overall objective of this study was to discern the drivers of microbial community composition at the extent of biogeographical provinces and regions. We hypothesized that factors associated with land use and climate would drive soil microbial community composition and biomass. Great Basin Province, Desert Province and California Floristic Province, California, USA. Using phospholipid fatty acid analysis, we compared microbial communities across eight land-use types sampled throughout the State of California, USA (n= 1117). The main factor driving composition and microbial biomass was land-use type, especially as related to water availability and disturbance. Dry soils were more enriched in Gram-negative bacteria and fungi, and wetter soils were more enriched in Gram-positive, anaerobic and sulphate-reducing bacteria. Microbial biomass was lowest in ecosystems with the wettest and driest soils. Disturbed soils had less fungal and more Gram-positive bacterial biomass than wildland soils. However, some factors known to influence microbial communities, such as soil pH and specific plant taxa, were not important here. Distinct microbial communities were associated with land-use types and disturbance at the regional extent. Overall, soil water availability was an important determinant of soil microbial community composition. However, because of the inclusion of managed and irrigated agricultural ecosystems, the effect of precipitation was not significant. Effects of environmental and management factors, such as flooding, tillage and irrigation, suggest that agricultural management can have larger effects on soil microbial communities than elevation and precipitation gradients.
Tomato root transcriptome response to a nitrogen-enriched soil patch
Background Nitrogen (N), the primary limiting factor for plant growth and yield in agriculture, has a patchy distribution in soils due to fertilizer application or decomposing organic matter. Studies in solution culture over-simplify the complex soil environment where microbial competition and spatial and temporal heterogeneity challenge roots' ability to acquire adequate amounts of nutrients required for plant growth. In this study, various ammonium treatments (as 15 N) were applied to a discrete volume of soil containing tomato ( Solanum lycopersicum ) roots to simulate encounters with a localized enriched patch of soil. Transcriptome analysis was used to identify genes differentially expressed in roots 53 hrs after treatment. Results The ammonium treatments resulted in significantly higher concentrations of both ammonium and nitrate in the patch soil. The plant roots and shoots exhibited increased levels of 15 N over time, indicating a sustained response to the enriched environment. Root transcriptome analysis identified 585 genes differentially regulated 53 hrs after the treatments. Nitrogen metabolism and cell growth genes were induced by the high ammonium (65 μg NH 4 + -N g -1 soil), while stress response genes were repressed. The complex regulation of specific transporters following the ammonium pulse reflects a simultaneous and synergistic response to rapidly changing concentrations of both forms of inorganic N in the soil patch. Transcriptional analysis of the phosphate transporters demonstrates cross-talk between N and phosphate uptake pathways and suggests that roots increase phosphate uptake via the arbuscular mycorrhizal symbiosis in response to N. Conclusion This work enhances our understanding of root function by providing a snapshot of the response of the tomato root transcriptome to a pulse of ammonium in a complex soil environment. This response includes an important role for the mycorrhizal symbiosis in the utilization of an N patch.
Hedgerows on Crop Field Edges Increase Soil Carbon to a Depth of 1 meter
Effective incentivization of soil carbon (C) storage as a climate mitigation strategy necessitates an improved understanding of management impacts on working farms. Using a regional survey on intensively managed farms, soil organic carbon (SOC) concentrations and stocks (0–100 cm) were evaluated in a pairwise comparison of long-term (10+ years) woody hedgerow plantings and adjacent crop fields in Yolo County, CA, USA. Twenty-one paired sites were selected to represent four soil types (Yolo silt loam, Brentwood clay loam, Capay silty clay, and Corning loam), with textures ranging from 16% to 51% clay. Soil C was higher in the upper 100 cm under hedgerows (14.4 kg m−2) relative to cultivated fields (10.6 kg m−2) and at all depths (0–10, 10–20, 20–50, 50–75, and 75–100 cm). The difference in SOC (3.8 kg m−2) did not vary by soil type, suggesting a broad potential for hedgerows to increase SOC stocks. Assuming adoption rates of 50 to 80% across California for hypothetical field edges of average-size farms, and an identical SOC sequestration potential across soil types, hedgerows could sequester 10.8 to 17.3 MMT CO2e, or 7 to 12% of California’s annual greenhouse gas reduction goals.
Assessment of carbon in woody plants and soil across a vineyard-woodland landscape
Background Quantification of ecosystem services, such as carbon (C) storage, can demonstrate the benefits of managing for both production and habitat conservation in agricultural landscapes. In this study, we evaluated C stocks and woody plant diversity across vineyard blocks and adjoining woodland ecosystems (wildlands) for an organic vineyard in northern California. Carbon was measured in soil from 44 one m deep pits, and in aboveground woody biomass from 93 vegetation plots. These data were combined with physical landscape variables to model C stocks using a geographic information system and multivariate linear regression. Results Field data showed wildlands to be heterogeneous in both C stocks and woody tree diversity, reflecting the mosaic of several different vegetation types, and storing on average 36.8 Mg C/ha in aboveground woody biomass and 89.3 Mg C/ha in soil. Not surprisingly, vineyard blocks showed less variation in above- and belowground C, with an average of 3.0 and 84.1 Mg C/ha, respectively. Conclusions This research demonstrates that vineyards managed with practices that conserve some fraction of adjoining wildlands yield benefits for increasing overall C stocks and species and habitat diversity in integrated agricultural landscapes. For such complex landscapes, high resolution spatial modeling is challenging and requires accurate characterization of the landscape by vegetation type, physical structure, sufficient sampling, and allometric equations that relate tree species to each landscape. Geographic information systems and remote sensing techniques are useful for integrating the above variables into an analysis platform to estimate C stocks in these working landscapes, thereby helping land managers qualify for greenhouse gas mitigation credits. Carbon policy in California, however, shows a lack of focus on C stocks compared to emissions, and on agriculture compared to other sectors. Correcting these policy shortcomings could create incentives for ecosystem service provision, including C storage, as well as encourage better farm stewardship and habitat conservation.
Biochemical proxies indicate differences in soil C cycling induced by long-term tillage and residue management in a tropical agroecosystem
Background & aim A potential benefit of conservation agriculture (CA) is soil organic carbon (SOC) accrual, yet recent studies indicate limited or no impact of CA on total SOC in tropical agroecosystems. We evaluated biochemical indicators of soil C cycling after 9 years (18 seasons) of contrasting tillage with and without maize residue retention in western Kenya. Methods Potential activities of C-cycling enzymes (β-glucosidase, GLU; β-galactosidase, GAL; glucosaminidase, GLM; cellobiohydrolase, CEL), permanganate-oxidizable C (POXC), and soil organic matter (SOM) composition (by infrared spectroscopy) were measured. Results POXC tended to be greater under reduced tillage and residue retention, but did not significantly differ among treatments (≤ 2% of SOC). Despite no significant differences in SOC concentrations or stocks, activities of all 4 C-cycling enzymes responded strongly to tillage, and to a lesser extent to residue management. Activities of GLU, GAL, and GLM were greatest under the combination of reduced tillage and residue retention relative to other treatments. Reduced tillage produced an enrichment in carboxyl C = O (+6%) and decreased polysaccharide C-0 (−3.5%) relative to conventional tillage irrespective of residue management. Conclusions Though enzyme activities and POXC are typically associated with SOC accrual, changes in soil C cycling at this site have not translated into significant differences in SOC after 9 years. Elevated enzyme activities may have offset potential SOC accumulation under CA. However, the ratio of C-cycling enzyme activities to SOC was higher under reduced tillage and residue retention relative to other treatments, indicating that stoichiometric scaling of SOC and enzyme activities does not explain absence of significant differences in SOC among tillage and residue managements. Potential factors that may explain the low SOC accrual rates in this tropical agroecosystem included the low, albeit realistic, levels of residue retention, nutrient limitations, and high temperatures favoring decomposition.