Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3,670
result(s) for
"Jacques, David A"
Sort by:
A lysine ring in HIV capsid pores coordinates IP6 to drive mature capsid assembly
2021
The HIV capsid self-assembles a protective conical shell that simultaneously prevents host sensing whilst permitting the import of nucleotides to drive DNA synthesis. This is accomplished through the construction of dynamic, highly charged pores at the centre of each capsid multimer. The clustering of charges required for dNTP import is strongly destabilising and it is proposed that HIV uses the metabolite IP6 to coordinate the pore during assembly. Here we have investigated the role of inositol phosphates in coordinating a ring of positively charged lysine residues (K25) that forms at the base of the capsid pore. We show that whilst IP5, which can functionally replace IP6, engages an arginine ring (R18) at the top of the pore, the lysine ring simultaneously binds a second IP5 molecule. Dose dependent removal of K25 from the pore severely inhibits HIV infection and concomitantly prevents DNA synthesis. Cryo-tomography reveals that K25A virions have a severe assembly defect that inhibits the formation of mature capsid cones. Monitoring both the kinetics and morphology of capsids assembled in vitro reveals that while mutation K25A can still form tubes, the ability of IP6 to drive assembly of capsid cones has been lost. Finally, in single molecule TIRF microscopy experiments, capsid lattices in permeabilised K25 mutant virions are rapidly lost and cannot be stabilised by IP6. These results suggest that the coordination of IP6 by a second charged ring in mature hexamers drives the assembly of conical capsids capable of reverse transcription and infection.
Journal Article
Host Cofactors and Pharmacologic Ligands Share an Essential Interface in HIV-1 Capsid That Is Lost upon Disassembly
by
Price, Amanda J.
,
McEwan, William A.
,
Jacques, David A.
in
Anti-HIV Agents - pharmacology
,
Binding Sites
,
Biology and Life Sciences
2014
The HIV-1 capsid is involved in all infectious steps from reverse transcription to integration site selection, and is the target of multiple host cell and pharmacologic ligands. However, structural studies have been limited to capsid monomers (CA), and the mechanistic basis for how these ligands influence infection is not well understood. Here we show that a multi-subunit interface formed exclusively within CA hexamers mediates binding to linear epitopes within cellular cofactors NUP153 and CPSF6, and is competed for by the antiretroviral compounds PF74 and BI-2. Each ligand is anchored via a shared phenylalanine-glycine (FG) motif to a pocket within the N-terminal domain of one monomer, and all but BI-2 also make essential interactions across the N-terminal domain: C-terminal domain (NTD:CTD) interface to a second monomer. Dissociation of hexamer into CA monomers prevents high affinity interaction with CPSF6 and PF74, and abolishes binding to NUP153. The second interface is conformationally dynamic, but binding of NUP153 or CPSF6 peptides is accommodated by only one conformation. NUP153 and CPSF6 have overlapping binding sites, but each makes unique CA interactions that, when mutated selectively, perturb cofactor dependency. These results reveal that multiple ligands share an overlapping interface in HIV-1 capsid that is lost upon viral disassembly.
Journal Article
Target-induced clustering activates Trim-Away of pathogens and proteins
2021
Trim-Away is a recently developed technology that exploits off-the-shelf antibodies and the RING E3 ligase and cytosolic antibody receptor TRIM21 to carry out rapid protein depletion. How TRIM21 is catalytically activated upon target engagement, either during its normal immune function or when repurposed for targeted protein degradation, is unknown. Here we show that a mechanism of target-induced clustering triggers intermolecular dimerization of the RING domain to switch on the ubiquitination activity of TRIM21 and induce virus neutralization or drive Trim-Away. We harness this mechanism for selective degradation of disease-causing huntingtin protein containing long polyglutamine tracts and expand the Trim-Away toolbox with highly active TRIM21–nanobody chimeras that can also be controlled optogenetically. This work provides a mechanism for cellular activation of TRIM RING ligases and has implications for targeted protein degradation technologies.
The mechanism behind Trim-Away, a protein-depletion approach using E3 ligase, TRIM21 and an antibody against the target, is now clarified, allowing expansion of the toolbox.
Journal Article
IP6 is an HIV pocket factor that prevents capsid collapse and promotes DNA synthesis
by
Saiardi, Adolfo
,
Dickson, Claire F
,
Jacques, David A
in
Adenosine Triphosphate - metabolism
,
Arginine
,
Biology
2018
The HIV capsid is semipermeable and covered in electropositive pores that are essential for viral DNA synthesis and infection. Here, we show that these pores bind the abundant cellular polyanion IP6, transforming viral stability from minutes to hours and allowing newly synthesised DNA to accumulate inside the capsid. An arginine ring within the pore coordinates IP6, which strengthens capsid hexamers by almost 10°C. Single molecule measurements demonstrate that this renders native HIV capsids highly stable and protected from spontaneous collapse. Moreover, encapsidated reverse transcription assays reveal that, once stabilised by IP6, the accumulation of new viral DNA inside the capsid increases >100 fold. Remarkably, isotopic labelling of inositol in virus-producing cells reveals that HIV selectively packages over 300 IP6 molecules per infectious virion. We propose that HIV recruits IP6 to regulate capsid stability and uncoating, analogous to picornavirus pocket factors. HIV-1/IP6/capsid/co-factor/reverse transcription.
Viruses like HIV invade cells and replicate their genome to create new viruses. To hide from components of our immune system that are active inside the cell, HIV uses a protein shell called a capsid, which protects its genome from detection and destruction. However, the capsid faces an engineering challenge beyond those faced by even the most complex man-made structures. This is because the capsid must be strong enough to survive for hours inside the cell but not so strong that it cannot quickly open when the virus needs to release its genome. How this process, called ‘uncoating’, is achieved is one of the great unanswered questions in HIV biology.
In 2016, researchers made the unexpected discovery that the HIV capsid is decorated with hundreds of pores: one at the center of every subunit from which it is built. Each pore contains a ring of six positively charged amino acids that should destabilize the capsid and cause it to break apart. Yet similar pores are found on a diverse range of viruses.
Mallery et al. – who include several of the researchers involved in the 2016 work – set out to investigate why the HIV capsid contains the positively charged pores. Initial experiments revealed that a molecule called IP6, which is abundant in cells, can bind to the HIV capsid. To do so, six negatively charged phosphate groups in IP6 match up with the six positively charged residues in the pore.
In a related study, Márquez et al. developed a new method that allows the fate of individual capsids to be visualized through time. Here, Mallery et al. use the method to show that IP6 increases how long the capsid remains intact from several minutes to over 10 hours. This allows HIV to copy its genome inside the capsid, meaning it remains protected while the virus prepares to produce new viruses. Mallery et al. also show that HIV packages more than 300 IP6 molecules into itself when it replicates.
Other viruses called picornaviruses use small molecules called pocket factors to stabilize the capsid and to trigger uncoating. Mallery et al. propose that IP6 is an HIV pocket factor. Just as studies of pocket factors have stimulated the development of anti-picornavirus drugs, understanding the role of IP6 may help to develop new treatments for HIV.
Journal Article
Kinetics of HIV-1 capsid uncoating revealed by single-molecule analysis
by
Aggarwal, Anupriya
,
Walsh, James
,
Wong, Andrew
in
Arginine
,
Capsid - drug effects
,
Capsid - metabolism
2018
Uncoating of the metastable HIV-1 capsid is a tightly regulated disassembly process required for release of the viral cDNA prior to nuclear import. To understand the intrinsic capsid disassembly pathway and how it can be modulated, we have developed a single-particle fluorescence microscopy method to follow the real-time uncoating kinetics of authentic HIV capsids in vitro immediately after permeabilizing the viral membrane. Opening of the first defect in the lattice is the rate-limiting step of uncoating, which is followed by rapid, catastrophic collapse. The capsid-binding inhibitor PF74 accelerates capsid opening but stabilizes the remaining lattice. In contrast, binding of a polyanion to a conserved arginine cluster in the lattice strongly delays initiation of uncoating but does not prevent subsequent lattice disassembly. Our observations suggest that different stages of uncoating can be controlled independently with the interplay between different capsid-binding regulators likely to determine the overall uncoating kinetics.
Viruses need to enter their host’s cells in order to replicate their genetic material and produce more copies of the virus. A protein shell called a capsid protects the virus during this journey. But the structure of the capsid presents a mystery. How can this protein shell be strong enough to remain intact as it enters a host cell, and yet quickly open up to release the viral genome after replication?
Unlike the capsids of many other viruses, those of HIV have irregular structures that rapidly fall apart once removed from the virus. This has thwarted attempts to study intact HIV capsids in order to understand how they work. However, we do know that HIV hijacks a range of molecules produced by the invaded host cell. Dissecting their effects on the capsid is key to understanding how the capsid disassembles.
Márquez et al. have now developed a method that can visualize individual HIV capsids – and how they disassemble – in real time using single-molecule microscopy. This revealed that capsids differ widely in their stability. The shell remains closed for a variable period of time and then collapses catastrophically as soon as it loses its first subunit.
Using the new technique, Márquez et al. also found that a small molecule drug called PF74 causes the capsid to crack open rapidly, but the remaining shell is then stabilized against further disassembly. These observations reconcile seemingly contradictory observations made by different research groups about how this drug affects the stability of the capsid.
The method developed by Márquez et al. enables researchers to measure how molecules produced by host cells interact with the viral capsid, a structure that is fundamental for the virus to establish an infection. It could also be used to test the effects of antiviral drugs that have been designed to target the capsid. The new technique has already been instrumental in related research by Mallery et al., which identifies a molecule found in host cells that stabilizes the capsid of HIV.
Journal Article
Pharmacologic hyperstabilisation of the HIV-1 capsid lattice induces capsid failure
by
Shah, Vaibhav B
,
Renner, Nadine
,
Walsh, James C
in
Anti-HIV Agents - pharmacology
,
Antiretroviral drugs
,
Antiretroviral therapy
2024
The HIV-1 capsid has emerged as a tractable target for antiretroviral therapy. Lenacapavir, developed by Gilead Sciences, is the first capsid-targeting drug approved for medical use. Here, we investigate the effect of lenacapavir on HIV capsid stability and uncoating. We employ a single particle approach that simultaneously measures capsid content release and lattice persistence. We demonstrate that lenacapavir’s potent antiviral activity is predominantly due to lethal hyperstabilisation of the capsid lattice and resultant loss of compartmentalisation. This study highlights that disrupting capsid metastability is a powerful strategy for the development of novel antivirals.
Journal Article
MxB sensitivity of HIV-1 is determined by a highly variable and dynamic capsid surface
by
Miles, Richard J
,
Hilditch, Laura
,
Towers, Greg J
in
Active Transport, Cell Nucleus
,
Binding sites
,
Biological response modifiers
2020
The type one interferon induced restriction factor Myxovirus resistance B (MxB) restricts HIV-1 nuclear entry evidenced by inhibition of 2-LTR but not linear forms of viral DNA. The HIV-1 capsid is the key determinant of MxB sensitivity and cofactor binding defective HIV-1 capsid mutants P90A (defective for cyclophilin A and Nup358 recruitment) and N74D (defective for CPSF6 recruitment) have reduced dependency on nuclear transport associated cofactors, altered integration targeting preferences and are not restricted by MxB expression. This has suggested that nuclear import mechanism may determine MxB sensitivity. Here we have use genetics to separate HIV-1 nuclear import cofactor dependence from MxB sensitivity. We provide evidence that MxB sensitivity depends on HIV-1 capsid conformation, rather than cofactor recruitment. We show that depleting CPSF6 to change nuclear import pathway does not impact MxB sensitivity, but mutants that recapitulate the effect of Cyclophilin A binding on capsid conformation and dynamics strongly impact MxB sensitivity. We demonstrate that HIV-1 primary isolates have different MxB sensitivities due to cytotoxic T lymphocyte (CTL) selected differences in Gag sequence but similar cofactor dependencies. Overall our work demonstrates a complex relationship between cyclophilin dependence and MxB sensitivity likely driven by CTL escape. We propose that cyclophilin binding provides conformational flexibility to HIV-1 capsid facilitating simultaneous evasion of capsid-targeting restriction factors including TRIM5 as well as MxB.
Journal Article
Statement in Support of: “Virology under the Microscope—a Call for Rational Discourse”
by
Mahar, Jackie
,
Eyre, Nicholas S.
,
Peel, Alison J.
in
Antiviral drugs
,
biosafety
,
Conduct of Scientific Research
2023
A recent review of gain-of-function studies conducted by the Australian Government defined gain-of-function research as “a change to the genome of any biological entity—a living organism such as an animal, insect, plant, virus, bacterium, or fungus—through any process so that it acquires a new or enhanced function”. D.A.J.; University of Melbourne: W.S.L. and P.V.; Medical Research Future Fund: J.M.; Channel 7 Children’s Research Foundation: J.M.C.; New Zealand Ministry for Business Innovation and Employment: V.W.; Health Research Council of New Zealand: N.E.N.; Innovation and Technology Commission, Hong Kong Special Administrative Region, China: M.P.; Department of Education Regional Research Collaboration Grant, Training Hub promoting Regional Industry and Innovation in Virology and Epidemiology (THRIIVE), J.A.R.; Juvenile Diabetes Research Foundation: K.W.K.; University of Queensland: K.L. Goodrum F, Lowen AC, Lakdawala S, Alwine J, Casadevall A, Imperiale MJ, Atwood W, Avgousti D, Baines J, Banfield B, Banks L, Bhaduri-McIntosh S, Bhattacharya D, Blanco-Melo D, Bloom D, Boon A, Boulant S, Brandt C, Broadbent A, Brooke C, Cameron C, Campos S, Caposio P, Chan G, Cliffe A, Coffin J, Collins K, Damania B, Daugherty M, Debbink K, DeCaprio J, Dermody T, Dikeakos J, DiMaio D, Dinglasan R, Duprex WP, Dutch R, Elde N, Emerman M, Enquist L, Fane B, Fernandez-Sesma A, Flenniken M, Frappier L, Frieman M, Frueh K, Gack M, Gaglia M, Gallagher T, Galloway D, et al. 2023. Genetic evidence of susceptible wildlife in SARS-CoV-2 positive samples at the Huanan Wholesale Seafood Market, Wuhan: Analysis and interpretation of data released by the Chinese Center for Disease Control. https://zenodo.org/record/7754299#.ZBsVyfZBycF.
Journal Article
HIV-1 evades innate immune recognition through specific cofactor recruitment
2013
Human immunodeficiency virus (HIV)-1 is shown here to depend on the recruitment to the HIV-1 capsid of specific cofactors involved in orchestrating nuclear entry and targeting; when these capsid–cofactor interactions are prevented either by virus mutation, cofactor depletion or pharmacological inhibition of cofactor recruitment, viral DNA can be detected by innate immune sensors.
How HIV dodges the bullet
Remarkably, human immunodeficiency virus (HIV)-1 infects macrophages — immune cells that are equipped to detect pathogens and mediate innate immune responses — without stimulating innate immunity. Greg Towers and colleagues now show that this depends on the recruitment to the HIV-1 capsid of specific cofactors that are involved in orchestrating nuclear entry and targeting. When these capsid–cofactor interactions are prevented either by virus mutation, cofactor depletion or pharmacological inhibition of cofactor recruitment, viral DNA can be detected by innate immune sensors, including cyclic GMP-AMP synthase.
Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively
1
,
2
, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.
Journal Article
HIV-1 uses dynamic capsid pores to import nucleotides and fuel encapsidated DNA synthesis
2016
Size-selective pores in the HIV-1 capsid hexamer recruit nucleotides, thereby allowing reverse transcription to take place inside the capsid.
Capsid pores key to HIV-1 proliferation
Recent work has suggested that HIV-1 evades innate DNA sensors such as cGAS by enclosing the viral genome inside a protective protein shell, the capsid. If the virus is to establish infection, however, it needs to be able to synthesize DNA. Leo James and colleagues show that HIV-1 sustains DNA synthesis inside the capsid by importing nucleotides through dynamic size-selective pores. The authors use structural, biophysical and virological methods to characterize these pores and find that they are highly efficient nucleotide pumps. The channel inhibitor hexacarboxybenzene is shown to block encapsidated reverse transcription, demonstrating the potential of the pore as an antiretroviral drug target.
During the early stages of infection, the HIV-1 capsid protects viral components from cytosolic sensors and nucleases such as cGAS and TREX, respectively, while allowing access to nucleotides for efficient reverse transcription
1
. Here we show that each capsid hexamer has a size-selective pore bound by a ring of six arginine residues and a ‘molecular iris’ formed by the amino-terminal β-hairpin. The arginine ring creates a strongly positively charged channel that recruits the four nucleotides with on-rates that approach diffusion limits. Progressive removal of pore arginines results in a dose-dependent and concomitant decrease in nucleotide affinity, reverse transcription and infectivity. This positively charged channel is universally conserved in lentiviral capsids despite the fact that it is strongly destabilizing without nucleotides to counteract charge repulsion. We also describe a channel inhibitor, hexacarboxybenzene, which competes for nucleotide binding and efficiently blocks encapsidated reverse transcription, demonstrating the tractability of the pore as a novel drug target.
Journal Article