Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
317 result(s) for "Jaenisch, Rudolf"
Sort by:
The role of GABAergic signalling in neurodevelopmental disorders
GABAergic inhibition shapes the connectivity, activity and plasticity of the brain. A series of exciting new discoveries provides compelling evidence that disruptions in a number of key facets of GABAergic inhibition have critical roles in the aetiology of neurodevelopmental disorders (NDDs). These facets include the generation, migration and survival of GABAergic neurons, the formation of GABAergic synapses and circuit connectivity, and the dynamic regulation of the efficacy of GABAergic signalling through neuronal chloride transporters. In this Review, we discuss recent work that elucidates the functions and dysfunctions of GABAergic signalling in health and disease, that uncovers the contribution of GABAergic neural circuit dysfunction to NDD aetiology and that leverages such mechanistic insights to advance precision medicine for the treatment of NDDs.Dysfunctional GABAergic signalling is common to various neurodevelopmental disorders (NDDs). Tang, Jaenisch and Sur give an overview of the contribution of GABA signalling dysfunction to NDD aetiology and examine how mechanistic insights into such disruption can be used to advance treatments for NDDs.
Generating genetically modified mice using CRISPR/Cas-mediated genome engineering
Crispr/Cas technology is a quick and efficient method of modifying the genomes of a range of organisms. Here the Jaenisch laboratory provides a protocol for CRISPR/Cas-mediated genome modification of mice. Mice with specific gene modifications are valuable tools for studying development and disease. Traditional gene targeting in mice using embryonic stem (ES) cells, although suitable for generating sophisticated genetic modifications in endogenous genes, is complex and time-consuming. We have recently described CRISPR/Cas-mediated genome engineering for the generation of mice carrying mutations in multiple genes, endogenous reporters, conditional alleles or defined deletions. Here we provide a detailed protocol for embryo manipulation by piezo-driven injection of nucleic acids into the cytoplasm to create gene-modified mice. Beginning with target design, the generation of gene-modified mice can be achieved in as little as 4 weeks. We also describe the application of the CRISPR/Cas technology for the simultaneous editing of multiple genes (five genes or more) after a single transfection of ES cells. The principles described in this protocol have already been applied in rats and primates, and they are applicable to sophisticated genome engineering in species in which ES cells are not available.
Whole chromosome loss and genomic instability in mouse embryos after CRISPR-Cas9 genome editing
Karyotype alterations have emerged as on-target complications from CRISPR-Cas9 genome editing. However, the events that lead to these karyotypic changes in embryos after Cas9-treatment remain unknown. Here, using imaging and single-cell genome sequencing of 8-cell stage embryos, we track both spontaneous and Cas9-induced karyotype aberrations through the first three divisions of embryonic development. We observe the generation of abnormal structures of the nucleus that arise as a consequence of errors in mitosis, including micronuclei and chromosome bridges, and determine their contribution to common karyotype aberrations including whole chromosome loss that has been recently reported after editing in embryos. Together, these data demonstrate that Cas9-mediated germline genome editing can lead to unwanted on-target side effects, including major chromosome structural alterations that can be propagated over several divisions of embryonic development. A possible undesired outcome of CRISPR-Cas9 germline editing is unwanted karyotype alterations. Here the authors track aberrations through three divisions of embryonic development following Cas9 editing.
iPSC Disease Modeling
Induced pluripotent stem cell technology has great potential to model human diseases, but faces many challenges. Induced pluripotent stem cell (iPSC) technology has provided previously unanticipated possibilities to model human disease in the culture dish. Reprogramming somatic cells from patients into an embryonic stem cell–like state ( 1 ) followed by differentiation into disease-relevant cell types can generate an unlimited source of human tissue carrying the genetic variations that caused or facilitated disease development ( 2 ). Yet, despite the excitement over this “disease-in-a-dish” approach, studying genetic disorders in patient-derived cells faces more challenges than studies using genetically well-defined model systems. Here we describe some of these limitations, and also present some solutions for ensuring that iPSC technology lives up to at least some of its promise.
Mechanisms and models of somatic cell reprogramming
Key Points Insights gained from population-based and single-cell studies reveal two major phases during reprogramming. OSK (OCT4, SOX2 and KLF4) factors act as 'pioneer' factors that open chromatin regions and allow the activation of those genes that are essential for establishment and maintenance of the pluripotent state. This promiscuous binding of OSK is also essential for the initiation of crucial processes for the reprogramming process such as proliferation and mesenchymal-to-epithelial transition (MET). We present evidence supporting a model in which the reprogramming process contains an early stochastic phase that leads to the instigation of a second more deterministic phase that starts with the activation of Sox2 . How similar are induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs)? The available evidence has not settled whether the alterations seen in iPSCs are the result of the reprogramming process or whether they are due to pre-existing genetic and epigenetic differences among parental fibroblasts. Our understanding of the molecular steps that occur during reprogramming somatic cells to induced pluripotent stem cells has recently been improved through analyses of cell populations and single cells. Here the authors consider the phases of reprogramming, models for describing the process and the roles of reprogramming factors. Conversion of somatic cells to pluripotency by defined factors is a long and complex process that yields embryonic-stem-cell-like cells that vary in their developmental potential. To improve the quality of resulting induced pluripotent stem cells (iPSCs), which is important for potential therapeutic applications, and to address fundamental questions about control of cell identity, molecular mechanisms of the reprogramming process must be understood. Here we discuss recent discoveries regarding the role of reprogramming factors in remodelling the genome, including new insights into the function of MYC, and describe the different phases, markers and emerging models of reprogramming.
Efficient derivation of microglia-like cells from human pluripotent stem cells
A protocol is developed to enable the differentiation of microglial-like cells from human pluripotent stem cells, which are shown to resemble primary human microglia, integrate into 3D neuronal cultures, and perform phagocytic and injury-response functions. Microglia, the only lifelong resident immune cells of the central nervous system (CNS), are highly specialized macrophages that have been recognized to have a crucial role in neurodegenerative diseases such as Alzheimer's, Parkinson's and adrenoleukodystrophy (ALD). However, in contrast to other cell types of the human CNS, bona fide microglia have not yet been derived from cultured human pluripotent stem cells. Here we establish a robust and efficient protocol for the rapid production of microglia-like cells from human (h) embryonic stem (ES) and induced pluripotent stem (iPS) cells that uses defined serum-free culture conditions. These in vitro pluripotent stem cell–derived microglia-like cells (termed pMGLs) faithfully recapitulate the expected ontogeny and characteristics of their in vivo counterparts, and they resemble primary fetal human and mouse microglia. We generated these cells from multiple disease-specific cell lines and find that pMGLs derived from an hES model of Rett syndrome are smaller than their isogenic controls. We further describe a platform to study the integration and live behavior of pMGLs in organotypic 3D cultures. This modular differentiation system allows for the study of microglia in highly defined conditions as they mature in response to developmentally relevant cues, and it provides a framework in which to study the long-term interactions of microglia residing in a tissue-like environment.
Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals
Cells of a multicellular organism are genetically homogeneous but structurally and functionally heterogeneous owing to the differential expression of genes. Many of these differences in gene expression arise during development and are subsequently retained through mitosis. Stable alterations of this kind are said to be 'epigenetic', because they are heritable in the short term but do not involve mutations of the DNA itself. Research over the past few years has focused on two molecular mechanisms that mediate epigenetic phenomena: DNA methylation and histone modifications. Here, we review advances in the understanding of the mechanism and role of DNA methylation in biological processes. Epigenetic effects by means of DNA methylation have an important role in development but can also arise stochastically as animals age. Identification of proteins that mediate these effects has provided insight into this complex process and diseases that occur when it is perturbed. External influences on epigenetic processes are seen in the effects of diet on long-term diseases such as cancer. Thus, epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression. The extent to which environmental effects can provoke epigenetic responses represents an exciting area of future research.
Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells
Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measure the gene expression dynamics of retinoic acid driven mESC differentiation from pluripotency to lineage commitment, using an unbiased single-cell transcriptomics approach. We find that the exit from pluripotency marks the start of a lineage transition as well as a transient phase of increased susceptibility to lineage specifying signals. Our study reveals several transcriptional signatures of this phase, including a sharp increase of gene expression variability and sequential expression of two classes of transcriptional regulators. In summary, we provide a comprehensive analysis of the exit from pluripotency and lineage commitment at the single cell level, a potential stepping stone to improved lineage manipulation through timing of differentiation cues. Commitment to different fates by differentiating pluripotent cells depends upon integration of external and internal signals. Here the authors analyse the entry of mouse embryonic stem cells into retinoic acid-mediated differentiation using single cell transcriptomics with high temporal resolution.
Human induced pluripotent stem cell-derived glial cells and neural progenitors display divergent responses to Zika and dengue infections
Maternal Zika virus (ZIKV) infection during pregnancy is recognized as the cause of an epidemic of microcephaly and other neurological anomalies in human fetuses. It remains unclear how ZIKV accesses the highly vulnerable population of neural progenitors of the fetal central nervous system (CNS), and which cell types of the CNS may be viral reservoirs. In contrast, the related dengue virus (DENV) does not elicit teratogenicity. To model viral interaction with cells of the fetal CNS in vitro, we investigated the tropism of ZIKV and DENV for different induced pluripotent stem cell-derived human cells, with a particular focus on microglia-like cells. We show that ZIKV infected isogenic neural progenitors, astrocytes, and microglia-like cells (pMGLs), but was only cytotoxic to neural progenitors. Infected glial cells propagated ZIKV and maintained ZIKV load over time, leading to viral spread to susceptible cells. DENV triggered stronger immune responses and could be cleared by neural and glial cells more efficiently. pMGLs, when cocultured with neural spheroids, invaded the tissue and, when infected with ZIKV, initiated neural infection. Since microglia derive from primitive macrophages originating in proximity to the maternal vasculature, they may act as a viral reservoir for ZIKV and establish infection of the fetal brain. Infection of immature neural stem cells by invading microglia may occur in the early stages of pregnancy, before angiogenesis in the brain rudiments. Our data are also consistent with ZIKV and DENV affecting the integrity of the blood–brain barrier, thus allowing infection of the brain later in life.
DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal
The molecular controls that govern the differentiation of embryonic stem (ES) cells remain poorly understood. DGCR8 is an RNA-binding protein that assists the RNase III enzyme Drosha in the processing of microRNAs (miRNAs), a subclass of small RNAs. Here we study the role of miRNAs in ES cell differentiation by generating a Dgcr8 knockout model. Analysis of mouse knockout ES cells shows that DGCR8 is essential for biogenesis of miRNAs. On the induction of differentiation, DGCR8-deficient ES cells do not fully downregulate pluripotency markers and retain the ability to produce ES cell colonies; however, they do express some markers of differentiation. This phenotype differs from that reported for Dicer1 knockout cells, suggesting that Dicer has miRNA-independent roles in ES cell function. Our findings indicate that miRNAs function in the silencing of ES cell self-renewal that normally occurs with the induction of differentiation.