Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
9,551 result(s) for "Jain, A. K."
Sort by:
Preferential Mode of gas invasion in sediments: Grain-scale mechanistic model of coupled multiphase fluid flow and sediment mechanics
We present a discrete element model for simulating, at the grain scale, gas migration in brine‐saturated deformable media. We rigorously account for the presence of two fluids in the pore space by incorporating forces on grains due to pore fluid pressures and surface tension between fluids. This model, which couples multiphase fluid flow with sediment mechanics, permits investigation of the upward migration of gas through a brine‐filled sediment column. We elucidate the ways in which gas migration may take place: (1) by capillary invasion in a rigid‐like medium and (2) by initiation and propagation of a fracture. We find that grain size is the main factor controlling the mode of gas transport in the sediment, and we show that coarse‐grain sediments favor capillary invasion, whereas fracturing dominates in fine‐grain media. The results have important implications for understanding vent sites and pockmarks in the ocean floor, deep subseabed storage of carbon dioxide, and gas hydrate accumulations in ocean sediments and permafrost regions. Our results predict that in fine sediments, hydrate will likely form in veins following a fracture network pattern, and the hydrate concentration will likely be quite low. In coarse sediments, the buoyant methane gas is likely to invade the pore space more uniformly, in a process akin to invasion percolation, and the overall pore occupancy is likely to be much higher than for a fracture‐dominated regime. These implications are consistent with laboratory experiments and field observations of methane hydrates in natural systems.
Profiling CARD14 gene expression in Indian Psoriasis patients
Several Genome Wide linkage Studies on psoriasis performed to gain insight of genetic architecture of the disease. Caspase Recruitment Domain-containing family 14 (CARD14) also known as CARMA2 or BIMP2; cytogenic location: 17q25.3, is a scaffold protein that primarily controls the skin epidermis’s nuclear factor kB (NF-kB) signaling pathway activity in skin epidermis, a master gene for inflammation, has been shown to be linked with rare, heritable form of psoriasis. CARD14 is predominantly expressed in keratinocytes and epithelial cells, but also in unidentified dermal cells. For better understanding of molecular processes involved in CARD14 underlying Indian psoriatic patients, we analyzed gene expression of 42 moderates to severe cases of plaque psoriasis and same number of controls using qPCR and its validation through Immunohistochemistry (IHC). This study identifies that the expression of CARD14 in dermal endothelial cells among patients with psoriasis and explores the potential functional consequences associated with an overactive CARD14 gene. Furthermore, the expression data from the western population was consistent with the results of the qPCR validation of the candidate gene. There is a significant correlation between Indian psoriasis vulgaris patients and CARD14 up-regulation, as evidenced by a roughly two-fold shift in lesional tissue expression. This provides insights into the pathways and genes linked to the pathogenesis of psoriasis.
Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions
Terrestrial ecosystems play a vital role in regulating the accumulation of carbon (C) in the atmosphere. Understanding the factors controlling land C uptake is critical for reducing uncertainties in projections of future climate. The relative importance of changing climate, rising atmospheric CO 2 , and other factors, however, remains unclear despite decades of research. Here, we use an ensemble of land models to show that models disagree on the primary driver of cumulative C uptake for 85% of vegetated land area. Disagreement is largest in model sensitivity to rising atmospheric CO 2 which shows almost twice the variability in cumulative land uptake since 1901 (1 s.d. of 212.8 PgC vs. 138.5 PgC, respectively). We find that variability in CO 2 and temperature sensitivity is attributable, in part, to their compensatory effects on C uptake, whereby comparable estimates of C uptake can arise by invoking different sensitivities to key environmental conditions. Conversely, divergent estimates of C uptake can occur despite being based on the same environmental sensitivities. Together, these findings imply an important limitation to the predictability of C cycling and climate under unprecedented environmental conditions. We suggest that the carbon modeling community prioritize a probabilistic multi-model approach to generate more robust C cycle projections.
Carbon cycle uncertainty in the Alaskan Arctic
Climate change is leading to a disproportionately large warming in the high northern latitudes, but the magnitude and sign of the future carbon balance of the Arctic are highly uncertain. Using 40 terrestrial biosphere models for the Alaskan Arctic from four recent model intercomparison projects – NACP (North American Carbon Program) site and regional syntheses, TRENDY (Trends in net land atmosphere carbon exchanges), and WETCHIMP (Wetland and Wetland CH4 Inter-comparison of Models Project) – we provide a baseline of terrestrial carbon cycle uncertainty, defined as the multi-model standard deviation (σ) for each quantity that follows. Mean annual absolute uncertainty was largest for soil carbon (14.0 ± 9.2 kg C m−2), then gross primary production (GPP) (0.22 ± 0.50 kg C m−2 yr−1), ecosystem respiration (Re) (0.23 ± 0.38 kg C m−2 yr−1), net primary production (NPP) (0.14 ± 0.33 kg C m−2 yr−1), autotrophic respiration (Ra) (0.09 ± 0.20 kg C m−2 yr−1), heterotrophic respiration (Rh) (0.14 ± 0.20 kg C m−2 yr−1), net ecosystem exchange (NEE) (−0.01 ± 0.19 kg C m−2 yr−1), and CH4 flux (2.52 ± 4.02 g CH4 m−2 yr−1). There were no consistent spatial patterns in the larger Alaskan Arctic and boreal regional carbon stocks and fluxes, with some models showing NEE for Alaska as a strong carbon sink, others as a strong carbon source, while still others as carbon neutral. Finally, AmeriFlux data are used at two sites in the Alaskan Arctic to evaluate the regional patterns; observed seasonal NEE was captured within multi-model uncertainty. This assessment of carbon cycle uncertainties may be used as a baseline for the improvement of experimental and modeling activities, as well as a reference for future trajectories in carbon cycling with climate change in the Alaskan Arctic and larger boreal region.
Global carbon budget 2014
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), EFF was 8.9 ± 0.4 GtC yr−1, ELUC 0.9 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.6 ± 0.5 GtC yr−1, and SLAND 2.9 ± 0.8 GtC yr−1. For year 2013 alone, EFF grew to 9.9 ± 0.5 GtC yr−1, 2.3% above 2012, continuing the growth trend in these emissions, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 5.4 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 2.5 ± 0.9 GtC yr−1. GATM was high in 2013, reflecting a steady increase in EFF and smaller and opposite changes between SOCEAN and SLAND compared to the past decade (2004–2013). The global atmospheric CO2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that EFF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO2 yr−1), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of EFF and assumed constant ELUC for 2014, cumulative emissions of CO2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO2) for 1870–2014, about 75% from EFF and 25% from ELUC. This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quéré et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).
Implementation of dynamic crop growth processes into a land surface model: evaluation of energy, water and carbon fluxes under corn and soybean rotation
Worldwide expansion of agriculture is impacting the earth's climate by altering carbon, water, and energy fluxes, but the climate in turn is impacting crop production. To study this two-way interaction and its impact on seasonal dynamics of carbon, water, and energy fluxes, we implemented dynamic crop growth processes into a land surface model, the Integrated Science Assessment Model (ISAM). In particular, we implemented crop-specific phenology schemes and dynamic carbon allocation schemes. These schemes account for light, water, and nutrient stresses while allocating the assimilated carbon to leaf, root, stem, and grain pools. The dynamic vegetation structure simulation better captured the seasonal variability in leaf area index (LAI), canopy height, and root depth. We further implemented dynamic root distribution processes in soil layers, which better simulated the root response of soil water uptake and transpiration. Observational data for LAI, above- and belowground biomass, and carbon, water, and energy fluxes were compiled from two AmeriFlux sites, Mead, NE, and Bondville, IL, USA, to calibrate and evaluate the model performance. For the purposes of calibration and evaluation, we use a corn–soybean (C4–C3) rotation system over the period 2001–2004. The calibrated model was able to capture the diurnal and seasonal patterns of carbon assimilation and water and energy fluxes for the corn–soybean rotation system at these two sites. Specifically, the calculated gross primary production (GPP), net radiation fluxes at the top of the canopy, and latent heat fluxes compared well with observations. The largest bias in model results was in sensible heat flux (SH) for corn and soybean at both sites. The dynamic crop growth simulation better captured the seasonal variability in carbon and energy fluxes relative to the static simulation implemented in the original version of ISAM. Especially, with dynamic carbon allocation and root distribution processes, the model's simulated GPP and latent heat flux (LH) were in much better agreement with observational data than for the static root distribution simulation. Modeled latent heat based on dynamic growth processes increased by 12–27% during the growing season at both sites, leading to an improvement in modeled GPP by 13–61% compared to the estimates based on the original version of the ISAM.
Global carbon budget 2013
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2 and land cover change (some including nitrogen–carbon interactions). All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003–2012), EFF was 8.6 ± 0.4 GtC yr−1, ELUC 0.9 ± 0.5 GtC yr−1, GATM 4.3 ± 0.1 GtC yr−1, SOCEAN 2.5 ± 0.5 GtC yr−1, and SLAND 2.8 ± 0.8 GtC yr−1. For year 2012 alone, EFF grew to 9.7 ± 0.5 GtC yr−1, 2.2% above 2011, reflecting a continued growing trend in these emissions, GATM was 5.1 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and assuming an ELUC of 1.0 ± 0.5 GtC yr−1 (based on the 2001–2010 average), SLAND was 2.7 ± 0.9 GtC yr−1. GATM was high in 2012 compared to the 2003–2012 average, almost entirely reflecting the high EFF. The global atmospheric CO2 concentration reached 392.52 ± 0.10 ppm averaged over 2012. We estimate that EFF will increase by 2.1% (1.1–3.1%) to 9.9 ± 0.5 GtC in 2013, 61% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the economy. With this projection, cumulative emissions of CO2 will reach about 535 ± 55 GtC for 1870–2013, about 70% from EFF (390 ± 20 GtC) and 30% from ELUC (145 ± 50 GtC). This paper also documents any changes in the methods and data sets used in this new carbon budget from previous budgets (Le Quéré et al., 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2013_V2.3).
Bandhead Energies of npp/pnn Three-Quasiparticle Quadruplets
Semi-empirical frameworks are widely used in calculating the bandhead energies of three-quasiparticle (3qp) configurations observed in well-deformed odd-A nuclei. In the present study, our aim is to improve the previous version of the semi-empirical model [Physical Review C. 1992, 45(6), 3013]. This is achieved by incorporating the ignored vital contributions owing to the irrotational motion of valance protons/neutrons, diagonal components of particle–particle coupling (ppc), and rotor–particle coupling (rpc) terms. We tested the validity of the improved version of the model by calculating the bandhead energies of twelve 3qp npp/pnn quadruplets observed in 163Er, 171,175,177Lu, 177Ta, and 183Re nuclides. Our new results show better agreement with the experimental data indicating the importance of newly added terms. We strongly expect that the present version of the model will provide support to future experimental campaigns for making configuration assignments to the newly observed 3qp bands and also in the identification of exact Nilsson’s configurations of 3qp quadruplets where experimental data that differentiate among the competing configuration are scarce.
Evaluation of simulated soil carbon dynamics in Arctic-Boreal ecosystems
Given the magnitude of soil carbon stocks in northern ecosystems, and the vulnerability of these stocks to climate warming, land surface models must accurately represent soil carbon dynamics in these regions. We evaluate soil carbon stocks and turnover rates, and the relationship between soil carbon loss with soil temperature and moisture, from an ensemble of eleven global land surface models. We focus on the region of NASA's Arctic-Boreal vulnerability experiment (ABoVE) in North America to inform data collection and model development efforts. Models exhibit an order of magnitude difference in estimates of current total soil carbon stocks, generally under- or overestimating the size of current soil carbon stocks by greater than 50 PgC. We find that a model's soil carbon stock at steady-state in 1901 is the prime driver of its soil carbon stock a hundred years later-overwhelming the effect of environmental forcing factors like climate. The greatest divergence between modeled and observed soil carbon stocks is in regions dominated by peat and permafrost soils, suggesting that models are failing to capture the frozen soil carbon dynamics of permafrost regions. Using a set of functional benchmarks to test the simulated relationship of soil respiration to both soil temperature and moisture, we find that although models capture the observed shape of the soil moisture response of respiration, almost half of the models examined show temperature sensitivities, or Q10 values, that are half of observed. Significantly, models that perform better against observational constraints of respiration or carbon stock size do not necessarily perform well in terms of their functional response to key climatic factors like changing temperature. This suggests that models may be arriving at the right result, but for the wrong reason. The results of this work can help to bridge the gap between data and models by both pointing to the need to constrain initial carbon pool sizes, as well as highlighting the importance of incorporating functional benchmarks into ongoing, mechanistic modeling activities such as those included in ABoVE.
CYP/PON genetic variations as determinant of organophosphate pesticides toxicity
In the present scenario of increased accumulation of pesticides in the environment, it is important to understand its impact on human health. The focus is on gene–environment interaction, highlighting the consequences and factors that may halt the biotransformation of some pesticides and change their actual dose response curve due to mixed exposure to pesticides. The paraoxonase and cytochrome P450 gene families are involved in the metabolism of oxon derivate (toxic than its parent compound) of organophosphate pesticides, thus, mutations in these genes may impact the metabolic outcome of pesticides and subsequent health hazards. The complex multi gene–environment interaction and one gene – one risk factor are two different aspects to understand the potential health effect related to environmental exposure studies. The genetic polymorphisms are associated with varying levels of risk within the population, as gene products of varied genotype alter the biotransformation of exogenous/endogenous substrates. This paper is aimed to review the impact of endogenous and exogenous factors on a mechanistic pathway of organophosphate pesticide biotransformation and various risk associated with it among the human population. Understanding the genetic polymorphism of genes involved in pesticide metabolism and highlighting the gene isoform dependent interindividual differences to metabolize particular pesticides may help us to unravel the reasons behind differential toxicity for pesticides exposure than expected.