Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
19 result(s) for "Jakobi, Meike"
Sort by:
Interferon-γ signaling synergizes with LRRK2 in neurons and microglia derived from human induced pluripotent stem cells
Parkinson’s disease-associated kinase LRRK2 has been linked to IFN type II (IFN-γ) response in infections and to dopaminergic neuronal loss. However, whether and how LRRK2 synergizes with IFN-γ remains unclear. In this study, we employed dopaminergic neurons and microglia differentiated from patient-derived induced pluripotent stem cells carrying LRRK2 G2019S, the most common Parkinson’s disease-associated mutation. We show that IFN-γ enhances the LRRK2 G2019S-dependent negative regulation of AKT phosphorylation and NFAT activation, thereby increasing neuronal vulnerability to immune challenge. Mechanistically, LRRK2 G2019S suppresses NFAT translocation via calcium signaling and possibly through microtubule reorganization. In microglia, LRRK2 modulates cytokine production and the glycolytic switch in response to IFN-γ in an NFAT-independent manner. Activated LRRK2 G2019S microglia cause neurite shortening, indicating that LRRK2-driven immunological changes can be neurotoxic. We propose that synergistic LRRK2/IFN-γ activation serves as a potential link between inflammation and neurodegeneration in Parkinson’s disease. IFN-γ signalling is linked to regional neuronal vulnerability in Parkinson’s disease. The authors show that a PD-associated pathogenic LRRK2 missense mutation increases neuronal susceptibility to immune challenges via negative regulation of AKT phosphorylation and NFAT activation in human iPSC-derived neurons and microglia.
Analytical performance of 17 commercially available point-of-care tests for CRP to support patient management at lower levels of the health system
Accurate and precise point-of-care (POC) testing for C-reactive protein (CRP) can help support healthcare providers in the clinical management of patients. Here, we compared the analytical performance of 17 commercially available POC CRP tests to enable more decentralized use of the tool. The following CRP tests were evaluated. Eight quantitative tests: QuikRead go (Aidian), INCLIX (Sugentech), Spinit (Biosurfit), LS4000 (Lansionbio), GS 1200 (Gensure Biotech), Standard F200 (SD Biosensor), Epithod 616 (DxGen), IFP-3000 (Xincheng Biological); and nine semi-quantitative tests: Actim CRP (ACTIM), NADAL Dipstick (nal von minden), NADAL cassette (nal von minden), ALLTEST Dipstick (Hangzhou Alltest Biotech), ALLTEST Cassette cut-off 10-40-80 (Hangzhou Alltest Biotech), ALLTEST Cassette cut-off 10–30 (Hangzhou Alltest Biotech), Biotest (Hangzhou Biotest Biotech), BTNX Quad Line (BTNX), BTNX Tri Line (BTNX). Stored samples (n = 660) had previously been tested for CRP using Cobas 8000 Modular analyzer (Roche Diagnostics International AG, Rotkreuz, Switzerland (reference standards). CRP values represented the clinically relevant range (10–100 mg/L) and were grouped into four categories (<10 mg/L, 10–40 mg/L or 10–30 mg/L, 40–80 mg/L or 30–80 mg/L, and > 80mg/L) for majority of the semi-quantitative tests. Among the eight quantitative POC tests evaluated, QuikRead go and Spinit exhibited better agreement with the reference method, showing slopes of 0.963 and 0.921, respectively. Semi-quantitative tests with the four categories showed a poor percentage agreement for the intermediate categories and higher percentage agreement for the lower and upper limit categories. Analytical performance varied considerably for the semi-quantitative tests, especially among the different categories of CRP values. Our findings suggest that quantitative tests might represent the best choice for a variety of use cases, as they can be used across a broad range of CRP categories.
Single-Domain Antibodies for Targeting, Detection, and In Vivo Imaging of Human CD4+ Cells
The advancement of new immunotherapies necessitates appropriate probes to monitor the presence and distribution of distinct immune cell populations. Considering the key role of CD4 + cells in regulating immunological processes, we generated novel single-domain antibodies [nanobodies (Nbs)] that specifically recognize human CD4. After in-depth analysis of their binding properties, recognized epitopes, and effects on T-cell proliferation, activation, and cytokine release, we selected CD4-specific Nbs that did not interfere with crucial T-cell processes in vitro and converted them into immune tracers for noninvasive molecular imaging. By optical imaging, we demonstrated the ability of a high-affinity CD4-Nb to specifically visualize CD4 + cells in vivo using a xenograft model. Furthermore, quantitative high-resolution immune positron emission tomography (immunoPET)/MR of a human CD4 knock-in mouse model showed rapid accumulation of 64 Cu-radiolabeled CD4-Nb1 in CD4 + T cell-rich tissues. We propose that the CD4-Nbs presented here could serve as versatile probes for stratifying patients and monitoring individual immune responses during personalized immunotherapy in both cancer and inflammatory diseases.
Making the effect visible – OX40 targeting nanobodies for in vivo imaging of activated T cells
Human OX40 (hOX40/CD134), a member of the TNF receptor superfamily, is mainly expressed on activated T lymphocytes. Triggered by its ligand OX40L (CD252), it provides costimulatory signals that support the differentiation, proliferation and long-term survival of T cells. Besides being a relevant therapeutic target, hOX40 is also an important biomarker for monitoring the presence or infiltration of activated T cells within the tumor microenvironment (TME), the inflammatory microenvironment (IME) in immune-mediated diseases (IMIDs) and the lymphatic organs. Here, we developed novel single domain antibodies (nanobodies, Nbs) targeting hOX40 to monitor the activation status of T cells by molecular imaging. Nbs against hOX40 (hOX40-Nbs) were selected from an immunized Nb-library by phage display. The identified hOX40-Nbs were characterized , including determination of their specificity, affinity, stability, epitope recognition and their impact on OX40 signaling and T cell function. A lead candidate was site-specifically conjugated with a fluorophore via sortagging and applied for noninvasive optical imaging (OI) of hOX40-expressing cells in a xenograft mouse model. Our selection campaign revealed four unique Nbs that exhibit strong binding affinities and high stabilities under physiological conditions. Epitope binning and domain mapping indicated the targeting of at least two different epitopes on hOX40. When analyzing their impact on OX40 signaling, an agonistic effect was excluded for all validated Nbs. Incubation of activated T cells with hOX40-Nbs did not affect cell viability or proliferation patterns, whereas differences in cytokine release were observed. OI with a fluorophore-conjugated lead candidate in experimental mice with hOX40-expressing xenografts demonstrated its specificity and functionality as an imaging probe. Considering the need for advanced probes for noninvasive monitoring of T cell activation dynamics, we propose, that our hOX40-Nbs have a great potential as imaging probes for noninvasive and longitudinal diagnostics. Quantification of OX40 T cells in TME or IME will provide crucial insights into the activation state of infiltrating T cells, offering a valuable biomarker for assessing immune responses, predicting treatment efficacy, and guiding personalized immunotherapy strategies in patients with cancer or IMIDs.
Inflammatory CSF profiles and longitudinal development of cognitive decline in sporadic and GBA-associated PD
Inflammation modifies the incidence and progression of Parkinson’s disease (PD). By using 30 inflammatory markers in CSF in 498 people with PD and 67 people with dementia with Lewy bodies (DLB) we show that: (1) levels of ICAM-1, Interleukin-8, MCP-1, MIP-1 beta, SCF and VEGF were associated with clinical scores and neurodegenerative CSF biomarkers (Aβ1-42, t-Tau, p181-Tau, NFL and α-synuclein). (2) PD patients with GBA mutations show similar levels of inflammatory markers compared to PD patients without GBA mutations, even when stratified by mutation severity. (3) PD patients who longitudinally developed cognitive impairment during the study had higher levels of TNF-alpha at baseline compared to patients without the development of cognitive impairment. (4) Higher levels of VEGF and MIP-1 beta were associated with a longer duration until the development of cognitive impairment. We conclude that the majority of inflammatory markers is limited in robustly predicting longitudinal trajectories of developing cognitive impairment.
Elevated cerebrospinal fluid levels of SERPIN E1 in participants with lewy body diseases
Parkinson’s disease (PD) exhibits substantial phenotypic variability, likely influenced, at least in part, by proteins associated with pathways integral to aging processes. Plasminogen activator inhibitor-1 (SERPIN E1) is known for its association with aging processes and exacerbated α-Synuclein pathology. We examined whether SERPIN E1 levels in cerebrospinal fluid (CSF) differ among controls (CON, N  = 16) and patients with PD ( N  = 479) or Dementia with Lewy bodies (DLB, N  = 67), considering that these conditions represent a spectrum of α-Synuclein pathology. Kaplan-Meier survival analysis stratified by SERPIN E1 tertile levels was conducted to evaluate phenotype-modifying effects. Elevated levels of SERPIN E1 exhibited an association with increased age and lower MOCA scores. Heightened SERPIN E1 levels were observed in individuals diagnosed with DLB, followed by PD and CON, and in males compared to females. The quantification of SERPIN E1 in CSF could potentially serve as a surrogate marker, depicting (pathological) aging processes.
The Peri-Implant and Periodontal Microbiota in Patients with and without Clinical Signs of Inflammation
Late implant failures, caused by the inflammation of surrounding tissues are a problem in implant dentistry. The path of bacterial transmission from teeth to implants is not completely understood. Therefore, the purpose of this study was to analyze intraindividual bacterial transmission characterizing subgingival microbiomes in teeth and implants, both in healthy subjects and in those with signs of periodontitis or peri-implantitis. Samples of peri-implant and dental sulcus fluid were collected. To identify the predominant microbiota, amplified fragments of bacterial 16S rRNA gene were separated by single strand conformation polymorphism analysis, sequenced and taxonomically classified. A total of 25 different predominant genera were found in the diseased group and 14 genera in the healthy group. Species richness did not differ significantly between implants, neighboring teeth and teeth with largest probing depth in the diseased group. Additionally, no differences between teeth and implants in the healthy group were detected. In contrast, microbial diversity varied between the different sampling points. Species richness is similar in healthy and diseased sites, but the composition of the bacterial community differed within the individual subjects. The underlying analyses strongly suggest that complete transmission from neighboring teeth to implants is unlikely.
The Impact of Biomaterial Cell Contact on the Immunopeptidome
Biomaterials play an increasing role in clinical applications and regenerative medicine. A perfectly designed biomaterial should restore the function of damaged tissue without triggering an undesirable immune response, initiate self-regeneration of the surrounding tissue and gradually degrade after implantation. The immune system is well recognized to play a major role in influencing the biocompatibility of implanted medical devices. To obtain a better understanding of the effects of biomaterials on the immune response, we have developed a highly sensitive novel test system capable of examining changes in the immune system by biomaterial. Here, we evaluated for the first time the immunopeptidome, a highly sensitive system that reflects cancer transformation, virus or drug influences and passes these cellular changes directly to T cells, as a test system to examine the effects of contact with materials. Since monocytes are one of the first immune cells reacting to biomaterials, we have tested the influence of different materials on the immunopeptidome of the monocytic THP-1 cell line. The tested materials included stainless steel, aluminum, zinc, high-density polyethylene, polyurethane films containing zinc diethyldithiocarbamate, copper, and zinc sulfate. The incubation with all material types resulted in significantly modulated peptides in the immunopeptidome, which were material-associated. The magnitude of induced changes in the immunopeptidome after the stimulation appeared comparable to that of bacterial lipopolysaccharides (LPS). The source proteins of many detected peptides are associated with cytotoxicity, fibrosis, autoimmunity, inflammation, and cellular stress. Considering all tested materials, it was found that the LPS-induced cytotoxicity-, inflammation- and cellular stress-associated HLA class I peptides were mainly induced by aluminum, whereas HLA class II peptides were mainly induced by stainless steel. These findings provide the first insights into the effects of biomaterials on the immunopeptidome. A more thorough understanding of these effects may enable the design of more biocompatible implant materials using in vitro models in future. Such efforts will provide a deeper understanding of possible immune responses induced by biomaterials such as fibrosis, inflammation, cytotoxicity, and autoimmune reactions.
Lipidome profiling with Raman microspectroscopy identifies macrophage response to surface topographies of implant materials
Biomaterial characteristics such as surface topographies have been shown to modulate macrophage phenotypes. The standard methodologies to measure macrophage response to biomaterials are marker-based and invasive. Raman microspectroscopy (RM) is a marker-independent, noninvasive technology that allows the analysis of living cells without the need for staining or processing. In the present study, we analyzed human monocyte-derived macrophages (MDMs) using RM, revealing that macrophage activation by lipopolysaccharides (LPS), interferons (IFN), or cytokines can be identified by lipid composition, which significantly differs in M0 (resting), M1 (IFN-γ/LPS), M2a (IL-4/IL-13), and M2c (IL-10) MDMs. To identify the impact of a biomaterial on MDM phenotype and polarization, we cultured macrophages on titanium disks with varying surface topographies and analyzed the adherent MDMs with RM. We detected surface topography–induced changes in MDM biochemistry and lipid composition that were not shown by less sensitive standard methods such as cytokine expression or surface antigen analysis. Our data suggest that RM may enable a more precise classification of macrophage activation and biomaterial–macrophage interaction.
Association of elevated cerebrospinal fluid levels of the longevity protein α‐Klotho with a delayed onset of cognitive impairment in Parkinson's disease patients
Background and Purpose Parkinson's disease (PD) is an age‐related condition characterized by substantial phenotypic variability. Consequently, pathways and proteins involved in biological aging, such as the central aging pathway comprising insulin‐like growth factor 1–α‐Klotho–sirtuin 1–forkhead box O3–peroxisome proliferator‐activated receptor γ, may potentially influence disease progression. Methods Cerebrospinal fluid (CSF) levels of α‐Klotho in 471 PD patients were examined. Of the 471 patients, 96 carried a GBA1 variant (PD GBA1), whilst the 375 non‐carriers were classified as PD wild‐type (PD WT). Each patient was stratified into a CSF α‐Klotho tertile group based on the individual level. Kaplan–Meier survival curves and Cox regression analysis stratified by tertile groups were conducted. These longitudinal data were available for 255 patients. Follow‐up times reached from 8.4 to 12.4 years. The stratification into PD WT and PD GBA1 was undertaken to evaluate potential continuum patterns, particularly in relation to CSF levels. Results Higher CSF levels of α‐Klotho were associated with a significant later onset of cognitive impairment. Elevated levels of α‐Klotho in CSF were linked to higher Montreal Cognitive Assessment scores in male PD patients with GBA1 mutations. Conclusions Our results indicate that higher CSF levels of α‐Klotho are associated with a delayed cognitive decline in PD. Notably, this correlation is more prominently observed in PD patients with GBA1 mutations, potentially reflecting the accelerated biological aging profile characteristic of individuals harboring GBA1 variants. High CSF levels of alpha‐Klotho were associated with a later onset of cognitive impairment in patients with Parkinson´s disease.