Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6
result(s) for
"Jakomin, Tjaša"
Sort by:
Test Performance Study on qPCR Assays for Detection of Phyllosticta citricarpa
by
Jakomin, Tjaša
,
Žunič, Janja Zajc
,
Kogovšek, Polona
in
Agricultural research
,
Ascomycota - genetics
,
Ascomycota - isolation & purification
2025
Citrus black spot (CBS), caused by the fungus Phyllosticta citricarpa, significantly affects citrus fruit marketability and can lead to premature fruit drop. Accurate and reliable detection of this quarantine pathogen is crucial, particularly for asymptomatic plant material. This study evaluated two qPCR assays, the EPPO recommended assay PC and assay Pc-TEF1, based on TEF region, for detecting P. citricarpa through a collaborative test performance study (TPS). DNA from the isolates of Phyllosticta spp. and other fungi was spiked into citrus fruit peel extracts (lemon, orange, and pomelo) and distributed among 13 laboratories. Sample and qPCR assay stability under typical transport conditions was confirmed, although prolonged storage affected Pc-TEF1 assay performance. The assays were assessed based on sensitivity, specificity, reproducibility, and repeatability. Both assays demonstrated high performance, with repeatability and reproducibility exceeding 95%. The PC assay, as expected, detected different related Phyllosticta species, while Pc-TEF1 showed higher specificity for P. citricarpa included in the TPS alone. Additionally, inhibitory effects were observed specifically in the pomelo peel samples, suggesting matrix-dependent variability. This TPS confirms that both PC and Pc-TEF1 qPCR assays are robust. Further evaluation of the qPCR assays would support the selection of the most reliable assays for the detection of P. citricarpa, contributing to the effective management of CBS disease in citrus production and trade.
Journal Article
Development of an on-site LAMP assay for identification of Thaumatotibia leucotreta and Helicoverpa armigera larvae on rose
2023
Current phytosanitary (import) measures for the false codling moth, Thaumatotibia leucotreta (Lepidoptera: Tortricidae) and the cotton bollworm moth Helicoverpa armigera (Lepidoptera: Noctuidae), do not provide protection to countries located in southern and central portions of the European Union (EU). Only glasshouses in northern parts of the EU benefit from EU wide phytosanitary regulation. The primary pathway for introduction of T. leucotreta and H. armigera into glasshouses in northern parts of the EU is via the import of cut flowers such as roses and to a lesser extent natural spread or migration. A limitating factor to the management and control of T. leucotreta and H. armigera is accurate identification. The aim of this study was to develop a loop-mediated isothermal amplification (LAMP) assay for specific identification of T. leucotreta and H. armigera.
Journal Article
Rapid loop-mediated isothermal amplification assays for grapevine yellows phytoplasmas on crude leaf-vein homogenate has the same performance as qPCR
by
Jakomin, Tjaša
,
Mehle, Nataša
,
Pugelj, Anja
in
Agriculture
,
Bioassays
,
Biomedical and Life Sciences
2017
A fluorescence-based real-time loop-mediated isothermal amplification (LAMP) assay for ‘
Candidatus
Phytoplasama solani’ (Bois noir phytoplasma; BNp) detection was developed and optimised for rapid laboratory and on-site BNp detection. This assay is highly specific, rapid and as sensitive as qPCR. It was validated according to European and Mediterranean Plant Protection Organisation recommendations. In addition, 286 grapevine leaf samples from the 2015 growing season were tested with this new real-time LAMP assay and an assay previously developed for detection of Flavescence dorée phytoplasma (FDp). These LAMP assays for detection of both BNp and FDp used without any DNA extraction step, which is a required step for qPCR analysis, were comparably effective to qPCR, and positive results were obtained in less than 35 min.
Journal Article
Corrigendum: Epidemiology of flavescence dorée and hazelnut decline in Slovenia: geographical distribution and genetic diversity of the associated 16SrV phytoplasmas
by
Foissac, Xavier
,
Salar, Pascal
,
Jakomin, Tjaša
in
Bacteriology
,
Corylus avellana
,
epidemiology
2023
Flavescence dorée (FD) phytoplasma from 16SrV-C and -D subgroups cause severe damage to grapevines throughout Europe. This phytoplasma is transmitted from grapevine to grapevine by the sap-sucking leafhopper Scaphoideus titanus . European black alder and clematis serve as perennial plant reservoirs for 16SrV-C phytoplasma strains, and their host range has recently been extended to hazelnuts. In Slovenia, hazelnut orchards are declining due to 16SrV phytoplasma infections, where large populations of the non-autochthonous leafhopper Orientus ishidae have been observed. To better characterise the phytoplasma-induced decline of hazelnut and possible transmission fluxes between these orchards and grapevine, genetic diversity of 16SrV phytoplasmas in grapevine, hazelnut and leafhoppers was monitored from 2017 to 2022. The nucleotide sequence analysis was based on the map gene. The most prevalent map genotype in grapevine in all wine-growing regions of Slovenia was M54, which accounted for 84% of the 176 grapevines tested. Besides M54, other epidemic genotypes with lower frequency were M38 (6%), M51 (3%), M50 (2%) and M122 (1%). M38, M50 and M122 were also detected in infected cultivated hazelnuts and in specimens of O. ishidae leafhopper caught in declining hazelnut orchards. It suggests that this polyphagous vector could be responsible for phytoplasma infection in hazelnut orchards and possibly for some phytoplasma exchanges between hazelnuts and grapevine. We hereby describe new genotypes: M158 in grapevine as well as four never reported genotypes M159 to M162 in hazelnut. Of these four genotypes in hazelnut, one (M160) was also detected in O. ishidae . Analysis of additional genes of the new genotypes allowed us to assign them to the VmpA-III cluster, which corresponds to the 16SrV-C strains previously shown to be compatible with S. titanus transmission.
Journal Article
Epidemiology of flavescence dorée and hazelnut decline in Slovenia: geographical distribution and genetic diversity of the associated 16SrV phytoplasmas
2023
Flavescence dorée (FD) phytoplasma from 16SrV-C and -D subgroups cause severe damage to grapevines throughout Europe. This phytoplasma is transmitted from grapevine to grapevine by the sap-sucking leafhopper
Scaphoideus titanus
. European black alder and clematis serve as perennial plant reservoirs for 16SrV-C phytoplasma strains, and their host range has recently been extended to hazelnuts. In Slovenia, hazelnut orchards are declining due to 16SrV phytoplasma infections, where large populations of the non-autochthonous leafhopper
Orientus ishidae
have been observed. To better characterise the phytoplasma-induced decline of hazelnut and possible transmission fluxes between these orchards and grapevine, genetic diversity of 16SrV phytoplasmas in grapevine, hazelnut and leafhoppers was monitored from 2017 to 2022. The nucleotide sequence analysis was based on the
map
gene. The most prevalent
map
genotype in grapevine in all wine-growing regions of Slovenia was M54, which accounted for 84% of the 176 grapevines tested. Besides M54, other epidemic genotypes with lower frequency were M38 (6%), M51 (3%), M50 (2%) and M122 (1%). M38, M50 and M122 were also detected in infected cultivated hazelnuts and in specimens of
O. ishidae
leafhopper caught in declining hazelnut orchards. It suggests that this polyphagous vector could be responsible for phytoplasma infection in hazelnut orchards and possibly for some phytoplasma exchanges between hazelnuts and grapevine. We hereby describe new genotypes: M158 in grapevine as well as four never reported genotypes M159 to M162 in hazelnut. Of these four genotypes in hazelnut, one (M160) was also detected in
O. ishidae
. Analysis of additional genes of the new genotypes allowed us to assign them to the VmpA-III cluster, which corresponds to the 16SrV-C strains previously shown to be compatible with
S. titanus
transmission.
Journal Article
In-Depth Comparison of Adeno-Associated Virus Containing Fractions after CsCl Ultracentrifugation Gradient Separation
by
Dolinar, Ana
,
Jakomin, Tjaša
,
Žnidarič, Magda Tušek
in
analytical methods
,
analytical ultracentrifugation (AUC)
,
Centrifugation
2024
Recombinant adeno-associated viruses (rAAVs) play a pivotal role in the treatment of genetic diseases. However, current production and purification processes yield AAV-based preparations that often contain unwanted empty, partially filled or damaged viral particles and impurities, including residual host cell DNA and proteins, plasmid DNA, and viral aggregates. To precisely understand the composition of AAV preparations, we systematically compared four different single-stranded AAV (ssAAV) and self-complementary (scAAV) fractions extracted from the CsCl ultracentrifugation gradient using established methods (transduction efficiency, analytical ultracentrifugation (AUC), quantitative and digital droplet PCR (qPCR and ddPCR), transmission electron microscopy (TEM) and enzyme-linked immunosorbent assay (ELISA)) alongside newer techniques (multiplex ddPCR, multi-angle light-scattering coupled to size-exclusion chromatography (SEC-MALS), multi-angle dynamic light scattering (MADLS), and high-throughput sequencing (HTS)). Suboptimal particle separation within the fractions resulted in unexpectedly similar infectivity levels. No single technique could simultaneously provide comprehensive insights in the presence of both bioactive particles and contaminants. Notably, multiplex ddPCR revealed distinct vector genome fragmentation patterns, differing between ssAAV and scAAV. This highlights the urgent need for innovative analytical and production approaches to optimize AAV vector production and enhance therapeutic outcomes.
Journal Article