Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
324
result(s) for
"Jamil, Md"
Sort by:
Future Industrial Applications: Exploring LPWAN-Driven IoT Protocols
by
Pranto, Samiul
,
Jamil, Hossain
,
Das, Rupak
in
Access control
,
Communication
,
Communications networks
2024
The Internet of Things (IoT) will bring about the next industrial revolution in Industry 4.0. The communication aspect of IoT devices is one of the most critical factors in choosing the device that is suitable for use. Thus far, the IoT physical layer communication challenges have been met with various communications protocols that provide varying strengths and weaknesses. This paper summarizes the network architectures of some of the most popular IoT wireless communications protocols. It also presents a comparative analysis of some of the critical features, including power consumption, coverage, data rate, security, cost, and quality of service (QoS). This comparative study shows that low-power wide area network (LPWAN)-based IoT protocols (LoRa, Sigfox, NB-IoT, LTE-M) are more suitable for future industrial applications because of their energy efficiency, high coverage, and cost efficiency. In addition, the study also presents an Industrial Internet of Things (IIoT) application perspective on the suitability of LPWAN protocols in a particular scenario and addresses some open issues that need to be researched. Thus, this study can assist in deciding the most suitable IoT communication protocol for an industrial and production field.
Journal Article
A Brief Review on the Influence of Ionic Liquids on the Mechanical, Thermal, and Chemical Properties of Biodegradable Polymer Composites
by
Shamsuri, Ahmad Adlie
,
Abdan, Khalina
,
Md. Jamil, Siti Nurul Ain
in
Biodegradability
,
Biodegradation
,
Carbon
2021
Biodegradable polymers are an exceptional class of polymers that can be decomposed by bacteria. They have received significant interest from researchers in several fields. Besides this, biodegradable polymers can also be incorporated with fillers to fabricate biodegradable polymer composites. Recently, a variety of ionic liquids have also been applied in the fabrication of the polymer composites. In this brief review, two types of fillers that are utilized for the fabrication of biodegradable polymer composites, specifically organic fillers and inorganic fillers, are described. Three types of synthetic biodegradable polymers that are commonly used in biodegradable polymer composites, namely polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL), are reviewed as well. Additionally, the influence of two types of ionic liquid, namely alkylimidazolium- and alkylphosphonium-based ionic liquids, on the mechanical, thermal, and chemical properties of the polymer composites, is also briefly reviewed. This review may be beneficial in providing insights into polymer composite investigators by enhancing the properties of biodegradable polymer composites via the employment of ionic liquids.
Journal Article
Exposure and health risks of metals in imported and local brands’ lipsticks and eye pencils from Bangladesh
by
Siddique, Md. Abu Bakar
,
Uddin, Md. Khabir
,
Rahman, Md. Mostafizur
in
Aquatic Pollution
,
Atmospheric Protection/Air Quality Control/Air Pollution
,
atomic absorption spectrometry
2023
Elemental contamination in cosmetics is a serious health concern as it can pose a cumulative effect on the user’s body over a long period. The prime motive of the study was to assess the concentration of 10 concerning chemical elements (Pb, Cd, Cr, As, Co, Ni, Cu, Zn, Fe, and Mn) in imported and local lipsticks and eye pencil samples collected from retail outlets in central Bangladesh (Dhaka city) and to assess their dynamic health risks for users. A total of 18 lipsticks and 24 eye pencils were studied and concentrations of chemical elements were examined with atomic absorption spectrophotometer. The health risk assessment was performed for dermal and ingestion routes of the contaminants. The results reveal that the concentrations of the examined elements vary with colors, brands, and origins. Pb and As concentrations were found below the permissible limit but Cr concentration in some samples exceeded the allowable limit in cosmetics. Cd was not detected in any samples; however, other examined elements such as Co, Ni, Cu, Mn, Zn, and Fe were detected in considerable concentrations. Elements like Mn, Zn, and Fe were found at high levels. In the case of lipstick samples, elemental concentrations followed the order of Fe > Zn > Mn > Ni > Cr > Cu > Pb > Co > As, while the order was Fe > Cu > Mn > Zn > Ni > Cr > Co > Pb > As for eye pencil samples. Results of the hazards quotient (HQ) indicate that there were no non-carcinogenic or carcinogenic risks of elements in samples for dermal exposure. But the cancer risk values of Cr (HQ > 1 for ingestion) in brown color lipsticks and Ni indicate that lipsticks have some carcinogenic effects if they enter the user’s body. Dermal cancer risk for eye pencils has also been calculated and for Pb, Cr, Ni, and As; the values were found within the acceptable ranges of 10
−6
–10
−4
. It is suggested that the allowable limit of all toxic elements in cosmetics must be established. Furthermore, continuous monitoring is urgently needed for personal care products like lipsticks and eye pencils commonly available in the local markets in the country like Bangladesh.
Journal Article
Preparations and Properties of Ionic Liquid-Assisted Electrospun Biodegradable Polymer Fibers
by
Shamsuri, Ahmad Adlie
,
Abdan, Khalina
,
Md. Jamil, Siti Nurul Ain
in
Additives
,
Biodegradability
,
Cellulose acetate
2022
Enhanced awareness of the environment and environmental conservation has inspired researchers to search for replacements for the use of volatile organic compounds in the processing of polymers. Recently, ionic liquids have been utilized as solvents for solvating natural and synthetic biodegradable polymers since they are non-volatile, recyclable, and non-flammable. They have also been utilized to prepare electrospun fibers from biodegradable polymers. In this concise review, examples of natural and synthetic biodegradable polymers that are generally employed as materials for the preparation of electrospun fibers are shown. In addition, examples of ionic liquids that are utilized in the electrospinning of biodegradable polymers are also displayed. Furthermore, the preparations of biodegradable polymer electrospinning solutions utilizing ionic liquids are demonstrated. Additionally, the properties of electrospun biodegradable polymer fibers assisted by different ionic liquids are also concisely reviewed. Besides this, the information acquired from this review provides a much deeper understanding of the preparation of electrospinning solutions and the essential properties of electrospun biodegradable polymer fibers. In summary, this concise review discovered that different functions (solvent or additive) of ionic liquids could provide distinct properties to electrospun fibers.
Journal Article
A Short Review on the Effect of Surfactants on the Mechanico-Thermal Properties of Polymer Nanocomposites
2020
The recent growth of nanotechnology consciousness has enhanced the attention of researchers on the utilization of polymer nanocomposites. Nanocomposite have widely been made by using synthetic, natural, biosynthetic, and synthetic biodegradable polymers with nanofillers. Nanofillers are normally modified with surfactants for increasing the mechanico-thermal properties of the nanocomposites. In this short review, two types of polymer nanocomposites modified by surfactants are classified, specifically surfactant-modified inorganic nanofiller/polymer nanocomposites and surfactant-modified organic nanofiller/polymer nanocomposites. Moreover, three types of surfactants, specifically non-ionic, anionic, and cationic surfactants that are frequently used to modify the nanofillers of polymer nanocomposites are also described. The effect of surfactants on mechanico-thermal properties of the nanocomposites is shortly reviewed. This review will capture the interest of polymer composite researchers and encourage the further enhancement of new theories in this research field.
Journal Article
Comparison between Conventional Treatment Processes and Advanced Oxidation Processes in Treating Slaughterhouse Wastewater: A Review
by
Fadhil Syukri
,
Siti Nurul Ain Md. Jamil
,
Mohsen Nourouzi Mobarekeh
in
Chemical oxygen demand
,
Chemical properties
,
Costs
2022
The blooming of the world’s human population and the transition of the human diet into a more westernized, high-protein diet has accelerated the production of slaughterhouse wastewater (SWW) as the number of meat processing plants (MPP) has increased in the past few decades. Conventional treatment processes (CTP) used in treating SWW, such as anaerobic processes, membrane processes, and electrocoagulation, have significant limitations, such as low treatment efficiency, tendency to foul, and high energy consumption, respectively. While advanced oxidation processes (AOPs) appear promising in replacing the former, they lack economic feasibility when used as a single process. In this paper, the limitations and disadvantages of the CTPs used in treating SWW influents are evaluated. The idea of utilising AOPs as a “complementary” step rather than a single process is also discussed. The review paper further explores the variability of different AOPs, such as Fenton, Electro-Fenton, Sono-Fenton, etc., and their respective strengths and weaknesses in counteracting the limitations of CTPs. The idea of incorporating resource recovery into wastewater treatment is also discussed towards the end of the paper as a means of generating additional revenue for the industry players to compensate for the high operation and maintenance costs of SWW treatment. The integration of a new-generation treatment process such as AOP into CTP while being able to carry out resource recovery is a future hurdle that must be overcome by scientists in order to produce a versatile, powerful, sustainable, yet financially feasible and operationally pragmatic treatment system.
Journal Article
Compatibilization Effect of Ionic Liquid-Based Surfactants on Physicochemical Properties of PBS/Rice Starch Blends: An Initial Study
2020
Polybutylene succinate (PBS)/rice starch (RS) blends were prepared via the hot-melt extrusion technique through the usage of a twin-screw extruder without and containing ionic liquid-based surfactants (ILbS). Two types of ILbS were used, specifically, 1-dodecyl-3-methylimidazolium trifluoromethanesulfonate, [C12mim][OTf] and 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C12mim][NTf2] were mixed into the PBS/RS blends at the different contents (0–8 wt.%). The tensile and flexural results showed that the blends containing ILbS have a high tensile extension and tensile energy compared to the blend without ILbS. The blends containing ILbS also have a high flexural extension compared with the blend without ILbS. The blends containing [C12mim][NTf2] have a significant improvement in the tensile energy (up to 239%) and flexural extension (up to 17%) in comparison with the blends containing [C12mim][OTf]. The FTIR spectra demonstrated that the presence of ILbS in the blends generated the intermolecular interactions (ion-dipole force and hydrophobic-hydrophobic interaction) between PBS and RS. The DSC results exhibited that the melting points of the prepared blends are decreased with the addition of ILbS. However, the TGA results showed that the thermal decomposition of the blends containing ILbS are higher than the blend without ILbS. The values of decomposition temperature were 387.4 °C, 381.8 °C, and 378.6 °C of PBS/RS-[C12mim][NTf2], PBS/RS-[C12mim][OTf], and PBS/RS, respectively. In conclusion, the ILbS could significantly improve the physicochemical properties of the PBS/RS blends by acting as a compatibilizer.
Journal Article
Surface Topography Steer Soft Tissue Response and Antibacterial Function at the Transmucosal Region of Titanium Implant
by
Safaei, Mohsen
,
Sharifi, Roohollah
,
Ebadi, Mona
in
Alloys
,
Animals
,
Anti-Bacterial Agents - chemistry
2024
Metallic dental implants have been extensively used in clinical practice due to their superior mechanical properties, biocompatibility, and aesthetic outcomes. However, their integration with the surrounding soft tissue at the mucosal region remains challenging and can cause implant failure due to the peri-implant immune microenvironment. The soft tissue integration of dental implants can be ameliorated through different surface modifications. This review discussed and summarized the current knowledge of topography-mediated immune response and topography-mediated antibacterial activity in Ti dental implants which enhance soft tissue integration and their clinical performance. For example, nanopillar-like topographies such as spinules, and spikes showed effective antibacterial activity in human salivary biofilm which was due to the lethal stretching of bacterial membrane between the nanopillars. The key findings of this review were (I) cross-talk between surface nanotopography and soft tissue integration in which the surface nanotopography can guide the perpendicular orientation of collagen fibers into connective tissue which leads to the stability of soft tissue, (II) nanotubular array could shift the macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2) and manipulate the balance of osteogenesis/osteoclasia, and (III) surface nanotopography can provide specific sites for the loading of antibacterial agents and metallic nanoparticles of clinical interest functionalizing the implant surface. Silver-containing nanotubular topography significantly decreased the formation of fibrous encapsulation in per-implant soft tissue and showed synergistic antifungal and antibacterial properties. Although the Ti implants with surface nanotopography have shown promising in targeting soft tissue healing in vitro and in vivo through their immunomodulatory and antibacterial properties, however, long-term in vivo studies need to be conducted particularly in osteoporotic, and diabetic patients to ensure their desired performance with immunomodulatory and antibacterial properties. The optimization of product development is another challenging issue for its clinical translation, as the dental implant with surface nanotopography must endure implantation and operation inside the dental microenvironment. Finally, the sustainable release of metallic nanoparticles could be challenging to reduce cytotoxicity while augmenting the therapeutic effects.
Journal Article
Effective Removal of Glyphosate from Aqueous Systems Using Synthesized PEG-Coated Calcium Peroxide Nanoparticles: Kinetics Study, H2O2 Release Performance and Degradation Pathways
by
Li, Fan
,
Amerhaider Nuar, Nurul Nazihah
,
Abdullah, Luqman Chuah
in
Calcium ions
,
Chemical oxygen demand
,
Contaminants
2023
Glyphosate (N-phosphonomethyl glycine) is a non-selective, broad-spectrum organophosphate herbicide. Its omnipresent application with large quantity has made glyphosate as a problematic contaminant in water. Therefore, an effective technology is urgently required to remove glyphosate and its metabolites from water. In this study, calcium peroxide nanoparticles (nCPs) were functioned as an oxidant to produce sufficient hydroxyl free radicals (·OH) with the presence of Fe2+ as a catalyst using a Fenton-based system. The nCPs with small particle size (40.88 nm) and high surface area (28.09 m2/g) were successfully synthesized via a co-precipitation method. The synthesized nCPs were characterized using transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), Brunauer–Emmett–Teller analysis (BET), dynamic light scattering (DLS), and field emission scanning electron microscopy (FESEM) techniques. Under the given conditions (pH = 3.0, initial nCPs dosage = 0.2 g, Ca2+/Fe2+ molar ratio = 6, the initial glyphosate concentration = 50 mg/L, RT), 99.60% total phosphorus (TP) removal and 75.10% chemical oxygen demand (COD) removal were achieved within 75 min. The degradation process fitted with the Behnajady–Modirshahla–Ghanbery (BMG) kinetics model. The H2O2 release performance and proposed degradation pathways were also reported. The results demonstrated that calcium peroxide nanoparticles are an efficient oxidant for glyphosate removal from aqueous systems.
Journal Article
Deep learning elements in maritime simulation programmes: a pedagogical exploration of learner experiences
by
Jamil Md Golam
,
Bhuiyan Zakirul
in
Academic disciplines
,
College students
,
Colleges & universities
2021
In this paper, we explore the learning and teaching of a maritime simulation programme to understand its deep learning elements. We followed the mixed methods approach and collected student perception data from a maritime school, situated within a UK university, using reflection-based survey (n = 112) and three focus groups with eleven students. Findings include the needs for defining clear learning outcomes, improving the learning content to enable exploration and second-chance learning, minimising theory–practice gaps by ensuring skills-knowledge balance and in-depth scholarship building, facilitating tasks for learning preparation and learning extension, and repositioning simulation components and their assessment schemes across the academic programme. Overall, the paper provides evidence on the importance of deep learning activities in maritime simulation and suggests guidelines on improving the existing practice. Although the findings are derived from a maritime education programme, they can be considered and applied in other academic disciplines which use simulation in their teaching and learning.
Journal Article