Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
80
result(s) for
"Jan, Rahmatullah"
Sort by:
Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions
2021
Plant secondary metabolites (SMs) play important roles in plant survival and in creating ecological connections between other species. In addition to providing a variety of valuable natural products, secondary metabolites help protect plants against pathogenic attacks and environmental stresses. Given their sessile nature, plants must protect themselves from such situations through accumulation of these bioactive compounds. Indeed, secondary metabolites act as herbivore deterrents, barriers against pathogen invasion, and mitigators of oxidative stress. The accumulation of SMs are highly dependent on environmental factors such as light, temperature, soil water, soil fertility, and salinity. For most plants, a change in an individual environmental factor can alter the content of secondary metabolites even if other factors remain constant. In this review, we focus on how individual environmental factors affect the accumulation of secondary metabolites in plants during both biotic and abiotic stress conditions. Furthermore, we discuss the application of abiotic and biotic elicitors in culture systems as well as their stimulating effects on the accumulation of secondary metabolites. Specifically, we discuss the shikimate pathway and the aromatic amino acids produced in this pathway, which are the precursors of a range of secondary metabolites including terpenoids, alkaloids, and sulfur- and nitrogen-containing compounds. We also detail how the biosynthesis of important metabolites is altered by several genes related to secondary metabolite biosynthesis pathways. Genes responsible for secondary metabolite biosynthesis in various plant species during stress conditions are regulated by transcriptional factors such as WRKY, MYB, AP2/ERF, bZIP, bHLH, and NAC, which are also discussed here.
Journal Article
Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system
2024
Due to global climate change, crops are certainly confronted with a lot of abiotic and biotic stress factors during their growth that cause a serious threat to their development and overall productivity. Among different abiotic stresses, salt and drought are considered the most devastating stressors with serious impact on crop’s yield stability. Here, the current study aimed to elucidate how melatonin works in regulating plant biomass, oxidative stress, antioxidant defense system, as well as the expression of genes related to salt and drought stress in rice plants. Eight groups of rice plants (3 replicates, 5 plants each) underwent varied treatments: control, melatonin, salt, drought, salt + drought, salt + melatonin, drought + melatonin, and salt + drought + melatonin. Melatonin (100 µM) was alternately applied a week before stress exposure; salt stress received 100 mM NaCl every 3 days for 3 weeks, and drought stress involved 10% PEG. Young leaves were randomly sampled from each group. The results showed that melatonin treatment markedly reduces salt and drought stress damage by promoting root, shoot length, fresh and dry weight, increasing chlorophyll contents, and inhibiting excessive production of oxidative stress markers. Salt and drought stress significantly decreased the water balance, and damaged cell membrane by reducing relative water contents and increasing electrolyte leakage. However, melatonin treated rice plants showed high relative water contents and low electrolyte leakage. Under salt and drought stress conditions, exogenous application of melatonin boosted the expression level of salt and drought stress responsive genes like
OsSOS
,
OsNHX
,
OsHSF
and
OsDREB
in rice plants. Taken together, our results reveal that melatonin treatment significantly increases salt and drought tolerance of rice plants, by increasing plant biomass, suppressing ROS accumulation, elevating antioxidants defense efficiency, and up-regulating the expression of salt and drought stress responsive genes.
Journal Article
Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress
by
Kang, Sang-Mo
,
Jan, Rahmatullah
,
Khan, Muhammad Aaqil
in
Abscisic acid
,
Abscisic Acid - metabolism
,
Acetic acid
2020
Background
Incidences of heat stress due to the changing global climate can negatively affect the growth and yield of temperature-sensitive crops such as soybean variety, Pungsannamul. Increased temperatures decrease crop productivity by affecting biochemical, physiological, molecular, and morphological factors either individually or in combination with other abiotic stresses. The application of plant growth-promoting endophytic bacteria (PGPEB) offers an ecofriendly approach for improving agriculture crop production and counteracting the negative effects of heat stress.
Results
We isolated, screened and identified thermotolerant
B. cereus
SA1 as a bacterium that could produce biologically active metabolites, such as gibberellin, indole-3-acetic acid, and organic acids. SA1 inoculation improved the biomass, chlorophyll content, and chlorophyll fluorescence of soybean plants under normal and heat stress conditions for 5 and 10 days. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA); however, SA1 inoculation markedly reduced ABA and increased SA. Antioxidant analysis results showed that SA1 increased the ascorbic acid peroxidase, superoxide dismutase, and glutathione contents in soybean plants. In addition, heat stress markedly decreased amino acid contents; however, they were increased with SA1 inoculation. Heat stress for 5 days increased heat shock protein (HSP) expression, and a decrease in
GmHSP
expression was observed after 10 days; however, SA1 inoculation augmented the heat stress response and increased HSP expression. The stress-responsive
GmLAX3
and
GmAKT2
were overexpressed in SA1-inoculated plants and may be associated with decreased reactive oxygen species generation, altered auxin and ABA stimuli, and enhanced potassium gradients, which are critical in plants under heat stress.
Conclusion
The current findings suggest that
B. cereus
SA1 could be used as a thermotolerant bacterium for the mitigation of heat stress damage in soybean plants and could be commercialized as a biofertilizer only in case found non-pathogenic.
Journal Article
Overexpression of OsF3H modulates WBPH stress by alteration of phenylpropanoid pathway at a transcriptomic and metabolomic level in Oryza sativa
2020
The whitebacked planthopper (WBPH), has become a devastating pest for rice crops, causes serious yield losses each year, and urgently needs biological control. Here, we developed a WBPH-resistant rice cultivar by overexpressing the OsF3H gene. A genetic functional analysis of the OsF3H gene confirmed its role in facilitating flavonoid contents and have indicated that the expression of the OsF3H gene is involved in regulation of the downstream genes (OsDFR and OsFLS) of the flavonoid pathway and genes (OsSLR1 and OsWRKY13) involved in other physiological pathways. OxF3H (OsF3H transgenic) plants accumulated significant amounts of the flavonols kaempferol (Kr) and quercetin (Qu) and the anthocyanins delphinidin and cyanidin, compared to the wild type, in response to the stress induced by WBPH. Similarly, OsF3H-related proteins were significantly expressed in OxF3H lines after WBPH infestation. The present study, indicated that the regulation of JA in OxF3H plants was suppressed due the overexpression of the OsF3H gene, which induced the expression of downstream genes related to anthocyanin. Similarly, the OsWRKY13 transcriptional factor was significantly suppressed in OxF3H plants during WBPH infestation. Exogenous application of Kr and Qu increased the survival rates of susceptible TN1 lines in response to WBPH, while decreased the survival rate of first instar WBPHs, indicating that both flavonols exhibit pesticide activity. Phenotypic demonstration also affirms that OxF3H plants show strong resistance to WBPH compared with wild type. Collectively, our result suggested that OsF3H overexpression led to the up-regulation of defense related genes and enhanced rice resistance to WBPH infestation.
Journal Article
Bioactivity and Therapeutic Potential of Kaempferol and Quercetin: New Insights for Plant and Human Health
by
Khan, Murtaza
,
Asaf, Sajjad
,
Lubna
in
Abiotic stress
,
Antiinfectives and antibacterials
,
Antimicrobial activity
2022
Plant secondary metabolites, especially flavonoids, are major metabolites widely found in plants that play several key roles in plant defence and signalling in response to stress conditions. The most studied among these flavonoids are kaempferol and quercetin due to their anti-oxidative potential and their key roles in the defence system, making them more critical for plant adaptation in stress environments. Kaempferol and quercetin in plants have great therapeutic potential for human health. Despite being well-studied, some of their functional aspects regarding plants and human health need further evaluation. This review summarizes the emerging potential of kaempferol and quercetin in terms of antimicrobial activity, bioavailability and bioactivity in the human body as well as in the regulation of plant defence in response to stresses and as a signalling molecule in terms of hormonal modulation under stress conditions. We also evaluated the safe use of both metabolites in the pharmaceutical industry.
Journal Article
Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses
by
Kang, Sang-Mo
,
Jan, Rahmatullah
,
Khan, Muhammad Aaqil
in
Abiotic stress
,
Abscisic acid
,
Acetic acid
2021
Background
Salinity is a major threat to the agriculture industry due to the negative impact of salinity stress on crop productivity. In the present study, we isolated rhizobacteria and evaluated their capacities to promote crop growth under salt stress conditions.
Results
We isolated rhizospheric bacteria from sand dune flora of Pohang beach, Korea, and screened them for plant growth-promoting (PGP) traits. Among 55 bacterial isolates, 14 produced indole-3-acetic acid (IAA), 10 produced siderophores, and 12 produced extracellular polymeric and phosphate solubilization. Based on these PGP traits, we selected 11 isolates to assess for salinity tolerance. Among them, ALT29 and ALT43 showed the highest tolerance to salinity stress. Next, we tested the culture filtrate of isolates ALT29 and ALT43 for IAA and organic acids to confirm the presence of these PGP products. To investigate the effects of ALT29 and ALT43 on salt tolerance in soybean, we grew seedlings in 0 mM, 80 mM, 160 mM, and 240 mM NaCl treatments, inoculating half with the bacterial isolates. Inoculation with ALT29 and ALT43 significantly increased shoot length (13%), root length (21%), shoot fresh and dry weight (44 and 35%), root fresh and dry weight (9%), chlorophyll content (16–24%),
Chl a
(8–43%),
Chl b
(13–46%), and carotenoid (14–39%) content of soybean grown under salt stress. Inoculation with ALT29 and ALT43 also significantly decreased endogenous ABA levels (0.77-fold) and increased endogenous SA contents (6–16%), increased total protein (10–20%) and glutathione contents, and reduced lipid peroxidation (0.8–5-fold), superoxide anion (21–68%), peroxidase (12.14–17.97%), and polyphenol oxidase (11.76–27.06%) contents in soybean under salinity stress. In addition, soybean treated with ALT29 and ALT43 exhibited higher K
+
uptake (9.34–67.03%) and reduced Na
+
content (2–4.5-fold). Genes involved in salt tolerance,
GmFLD19
and
GmNARK
, were upregulated under NaCl stress; however, significant decreases in
GmFLD19
(3–12-fold) and
GmNARK
(1.8–3.7-fold) expression were observed in bacterial inoculated plants.
Conclusion
In conclusion, bacterial isolates ALT29 and ALT43 can mitigate salinity stress and increase plant growth, providing an eco-friendly approach for addressing saline conditions in agricultural production systems.
Journal Article
Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of Bacillus cereus and comparison with exogenous humic acid application
by
Kang, Sang-Mo
,
Jan, Rahmatullah
,
Khan, Muhammad Aaqil
in
Abiotic stress
,
Abscisic acid
,
Agricultural production
2020
Heat stress is one of the major abiotic stresses that impair plant growth and crop productivity. Plant growth-promoting endophytic bacteria (PGPEB) and humic acid (HA) are used as bio-stimulants and ecofriendly approaches to improve agriculture crop production and counteract the negative effects of heat stress. Current study aimed to analyze the effect of thermotolerant SA1 an isolate of Bacillus cereus and HA on tomato seedlings. The results showed that combine application of SA1+HA significantly improved the biomass and chlorophyll fluorescence of tomato plants under normal and heat stress conditions. Heat stress increased abscisic acid (ABA) and reduced salicylic acid (SA) content; however, combined application of SA1+HA markedly reduced ABA and increased SA. Antioxidant enzymes activities revealed that SA1 and HA treated plants exhibited increased levels of ascorbate peroxidase (APX), superoxide dismutase (SOD), and reduced glutathione (GSH). In addition, heat stress markedly reduced the amino acid contents; however, the amino acids were increased with co-application of SA1+HA. Similarly, inductively-coupled plasma mass-spectrometry results showed that plants treated with SA1+HA exhibited significantly higher iron (Fe+), phosphorus (P), and potassium (K+) uptake during heat stress. Heat stress increased the relative expression of SlWRKY33b and autophagy-related (SlATG5) genes, whereas co-application of SA1+HA augmented the heat stress response and reduced SlWRKY33b and SlATG5 expression. The heat stress-responsive transcription factor (SlHsfA1a) and high-affinity potassium transporter (SlHKT1) were upregulated in SA1+HA-treated plants. In conclusion, current findings suggest that co-application with SA1+HA can be used for the mitigation of heat stress damage in tomato plants and can be commercialized as a biofertilizer.
Journal Article
Halotolerant Rhizobacterial Strains Mitigate the Adverse Effects of NaCl Stress in Soybean Seedlings
by
Jan, Rahmatullah
,
Kim, Kyung-Min
,
Khan, Muhammad Aaqil
in
Abiotic stress
,
Abscisic Acid - metabolism
,
Acetic acid
2019
Background. Salinity is one of the major abiotic constraints that hinder health and quality of crops. Conversely, halotolerant plant growth-promoting rhizospheric (PGPR) bacteria are considered biologically safe for alleviating salinity stress. Results. We isolated halotolerant PGPR strains from the rhizospheric soil of Artemisia princeps, Chenopodium ficifolium, Echinochloa crus-galli, and Oenothera biennis plants; overall, 126 strains were isolated. The plant growth-promoting traits of these isolates were studied by inoculating them with the soil used to grow soybean plants under normal and salt stress (NaCl; 200 mM) conditions. The isolates identified as positive for growth-promoting activities were subjected to molecular identification. Out of 126 isolates, five strains—Arthrobacter woluwensis (AK1), Microbacterium oxydans (AK2), Arthrobacter aurescens (AK3), Bacillus megaterium (AK4), and Bacillus aryabhattai (AK5)—were identified to be highly tolerant to salt stress and demonstrated several plant growth-promoting traits like increased production of indole-3-acetic acid (IAA), gibberellin (GA), and siderophores and increased phosphate solubilization. These strains were inoculated in the soil of soybean plants grown under salt stress (NaCl; 200 mM) and various physiological and morphological parameters of plants were studied. The results showed that the microbial inoculation elevated the antioxidant (SOD and GSH) level and K+ uptake and reduced the Na+ ion concentration. Moreover, inoculation of these microbes significantly lowered the ABA level and increased plant growth attributes and chlorophyll content in soybean plants under 200 mM NaCl stress. The salt-tolerant gene GmST1 was highly expressed with the highest expression of 42.85% in AK1-treated plants, whereas the lowest expression observed was 13.46% in AK5-treated plants. Similarly, expression of the IAA regulating gene GmLAX3 was highly depleted in salt-stressed plants by 38.92%, which was upregulated from 11.26% to 43.13% upon inoculation with the microorganism. Conclusion. Our results showed that the salt stress-resistant microorganism used in these experiments could be a potential biofertilizer to mitigate the detrimental effects of salt stress in plants via regulation of phytohormones and gene expression.
Journal Article
Enhanced Flavonoid Accumulation Reduces Combined Salt and Heat Stress Through Regulation of Transcriptional and Hormonal Mechanisms
2021
Abiotic stresses, such as salt and heat stress, coexist in some regions of the world and can have a significant impact on agricultural plant biomass and production. Rice is a valuable crop that is susceptible to salt and high temperatures. Here, we studied the role of flavanol 3-hydroxylase in response to combined salt and heat stress with the aim of better understanding the defensive mechanism of rice. We found that, compared with wild-type plants, the growth and development of transgenic plants were improved due to higher biosynthesis of kaempferol and quercetin. Furthermore, we observed that oxidative stress was decreased in transgenic plants compared with that in wild-type plants due to the reactive oxygen species scavenging activity of kaempferol and quercetin as well as the modulation of glutathione peroxidase and lipid peroxidase activity. The expression of high-affinity potassium transporter ( HKT ) and salt overly sensitive ( SOS ) genes was significantly increased in transgenic plants compared with in control plants after 12 and 24 h, whereas sodium-hydrogen exchanger ( NHX ) gene expression was significantly reduced in transgenic plants compared with in control plants. The expression of heat stress transcription factors (HSFs) and heat shock proteins (HSPs) in the transgenic line increased significantly after 6 and 12 h, although our understanding of the mechanisms by which the F3H gene regulates HKT , SOS , NHX , HSF , and HSP genes is limited. In addition, transgenic plants showed higher levels of abscisic acid (ABA) and lower levels of salicylic acid (SA) than were found in control plants. However, antagonistic cross talk was identified between these hormones when the duration of stress increased; SA accumulation increased, whereas ABA levels decreased. Although transgenic lines showed significantly increased Na+ ion accumulation, K+ ion accumulation was similar in transgenic and control plants, suggesting that increased flavonoid accumulation is crucial for balancing Na+/K+ ions. Overall, this study suggests that flavonoid accumulation increases the tolerance of rice plants to combined salt and heat stress by regulating physiological, biochemical, and molecular mechanisms.
Journal Article
Melatonin alleviates lead-induced stress in rice through physiological regulation and molecular defense mechanisms
2025
This study investigates how melatonin (Mel) supplementation mitigates Lead (Pb) toxicity in rice by evaluating plant growth, physiology, and molecular responses. Pb stress markedly reduced root and shoot lengths by 63% and 33%, respectively, compared to control plants; however, Mel supplementation effectively mitigated this inhibition, enhancing root and shoot lengths by 100% and 47%, respectively, relative to Pb-stressed plants after 10 days. Furthermore, prolonged Mel application under Pb stress sustained growth improvement, increasing root and shoot lengths by 36% and 35%, respectively, compared to Pb-stressed plants. We observed a 19.5% increase in plant height with Mel treatment, along with improvements in yield-related traits such as panicle length and seed weight. Beyond morphological traits, Mel reduced Pb-induced oxidative stress by decreasing
, H
2
O
2
, and MDA levels by 36%, 26%, and 46%, respectively. Moreover, Mel modulated antioxidant enzyme activities in Pb + Mel-treated plants by decreasing ascorbate peroxidase (APX) activity and enhancing catalase (CAT) activity. Additionally, Mel regulated ion homeostasis, with K
+
and Ca
2+
contents increasing by 74% and 89%, respectively. At molecular level, Mel reduced
OsMTP1
levels by 45% and increased
OsPCS1
by up to 193%. Overall, Mel significantly alleviates Pb toxicity by enhancing growth, physiological traits, and stress resilience in rice plants, highlighting its potential as a sustainable strategy for improving crop performance under heavy metal stress and offering promising directions for future agricultural research.
Journal Article