Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
74 result(s) for "Jana Pokorná"
Sort by:
Uncovering the glutamate carboxypeptidase II microenvironment using a multi-labeling proteomic approach
Glutamate carboxypeptidase II (GCPII) is a membrane-bound metallopeptidase predominantly expressed in neural and prostatic tissues, with significantly elevated levels in prostate carcinoma that increase with tumor grade. Despite its significance as a target for imaging and therapy in prostate cancer, its physiological function in this tissue remains poorly understood. To help fill this knowledge gap, we developed an integrated approach combining proximity labeling technologies for proteomic profiling (horseradish peroxidase, µMap, and riboflavin tetraacetate labeling) with our previously established iBody platform, which targets GCPII with a small-molecule specific inhibitor with proven efficacy as a chemical probe. Proximity labeling proteomic experiments on U251 MG–GCPII cells were followed by mass spectrometry and statistical analysis of protein abundances obtained by label-free quantification. Additionally, selected identified proteins were further validated through Western blot analyses and GCPII pulldown assays using cell lysates. This work identifies a network of GCPII-associated proteins that are potentially involved in cancer metabolism, migration, invasiveness, progression, and immune evasion. Our novel proximity proteomics labeling strategy provides a low-background framework, efficient biotinylation, and enhanced target binding via the avidity effect. Among the approaches tested, riboflavin tetraacetate-based iBody labeling exhibited the highest precision, underscoring its potential for membrane protein interactome mapping.
Kinetic, Thermodynamic, and Structural Analysis of Drug Resistance Mutations in Neuraminidase from the 2009 Pandemic Influenza Virus
Neuraminidase is the main target for current influenza drugs. Reduced susceptibility to oseltamivir, the most widely prescribed neuraminidase inhibitor, has been repeatedly reported. The resistance substitutions I223V and S247N, alone or in combination with the major oseltamivir-resistance mutation H275Y, have been observed in 2009 pandemic H1N1 viruses. We overexpressed and purified the ectodomain of wild-type neuraminidase from the A/California/07/2009 (H1N1) influenza virus, as well as variants containing H275Y, I223V, and S247N single mutations and H275Y/I223V and H275Y/S247N double mutations. We performed enzymological and thermodynamic analyses and structurally examined the resistance mechanism. Our results reveal that the I223V or S247N substitution alone confers only a moderate reduction in oseltamivir affinity. In contrast, the major oseltamivir resistance mutation H275Y causes a significant decrease in the enzyme’s ability to bind this drug. Combination of H275Y with an I223V or S247N mutation results in extreme impairment of oseltamivir’s inhibition potency. Our structural analyses revealed that the H275Y substitution has a major effect on the oseltamivir binding pose within the active site while the influence of other studied mutations is much less prominent. Our crystal structures also helped explain the augmenting effect on resistance of combining H275Y with both substitutions.
From Nonpeptide toward Noncarbon Protease Inhibitors: Metallacarboranes as Specific and Potent Inhibitors of HIV Protease
HIV protease (PR) represents a prime target for rational drug design, and protease inhibitors (PI) are powerful antiviral drugs. Most of the current PIs are pseudopeptide compounds with limited bioavailability and stability, and their use is compromised by high costs, side effects, and development of resistant strains. In our search for novel PI structures, we have identified a group of inorganic compounds, icosahedral metallacarboranes, as candidates for a novel class of nonpeptidic PIs. Here, we report the potent, specific, and selective competitive inhibition of HIV PR by substituted metallacarboranes. The most active compound, sodium hydrogen butylimino bis-8,8-[5-(3-oxa-pentoxy)-3-cobalt bis(1,2-dicarbollide)]di-ate, exhibited a Ki value of 2.2 nM and a submi-cromolar EC50 in antiviral tests, showed no toxicity in tissue culture, weakly inhibited human cathepsin D and pepsin, and was inactive against trypsin, papain, and amylase. The structure of the parent cobalt bis(1,2-dicarbollide) in complex with HIV PR was determined at 2.15 $\\ring{A}$ resolution by protein crystallography and represents the first carborane-protein complex structure determined. It shows the following mode of PR inhibition: two molecules of the parent compound bind to the hydrophobic pockets in the flap-proximal region of the S3 and S3' subsites of PR. We suggest, therefore, that these compounds block flap closure in addition to filling the corresponding binding pockets as conventional PIs. This type of binding and inhibition, chemical and biological stability, low toxicity, and the possibility to introduce various modifications make boron clusters attractive pharmacophores for potent and specific enzyme inhibition.
Derivatization chemistry of the double-decker dicobalt sandwich ion targeted to design biologically active substances
A synthesis of the first double-decker sandwich ion [(1',2'-C )-3,3'-Co-(1,2-C )-6,3\"-Co-(1\",2\"-C )] ( ) derivatives is described, having been developed in connection with our search for biologically active substances. A series of B-substituted hydroxyl derivatives was prepared by direct hydroxylation of the ion using aqueous sulfuric acid. Two isomers of monohydroxy derivatives were isolated. The main product was substituted at the central “canastide” ion fragment, whereas the substitution site for the minor isomer corresponded to a B(8) atom of one of the terminal 11-vertex dicarbollide parts. Similarly, the disubstitution occurred slightly more preferentially on the “canastide” fragment providing the main isomeric derivative with a symmetric structure. The cesium salt of this ion was characterized by X-ray diffraction. Two other isomeric species have one substituent sitting on the “canastide” ion and the second present on the dicarbollide ligand in or -geometric arrangement. A new zwitterion anion [(1',2'-C )-3',3-Co-(8-(CH O-1,2-C )-6,3\"-Co-(1\",2\"-C )-] was prepared by the reaction of the parent ion with tetrahydrofuran (THF), activated by BF ·OEt . This new compound serves as a versatile building block for constructing organic derivatives, as exemplified by the ring cleavage by various amines or phenolate ions and the synthesis of a basic series of compounds of general formulation [(1',2'-C )-3',3-Co-(8-X-(CH O-1,2-C )-6,3\"-Co-(1\",2\"-C )] where the organic end-groups X adjacent to the “canastide” moiety via a B-oxatetramethylene spacer corresponds to C NH , NC , N(C , (C P ( = 1), or (4- -C -1-O) and (2-CH O-C O) ( = 2). We show that dicluster compounds with two identical anion units or asymmetric molecules containing two different clusters, the cobalt bis(dicarbollide) and the anion, are accessible using this building block. All compounds were characterized by high-resolution NMR ( H, C, and B) and mass spectrometry. Some of the compounds were tested by in vitro assay for their ability to inhibit the HIV-protease (HIV-PR) enzyme. The majority of the tested species proved substantially high activity toward the HIV-PR, exhibiting on the other hand a noncompetitive mechanism of the inhibition.
Regulation of Inflammatory Response by Transmembrane Adaptor Protein LST1
LST1 is a small adaptor protein expressed in leukocytes of myeloid lineage. Due to the binding to protein tyrosine phosphatases SHP1 and SHP2 it was thought to have negative regulatory function in leukocyte signaling. It was also shown to be involved in cytoskeleton regulation and generation of tunneling nanotubes. LST1 gene is located in MHCIII locus close to many immunologically relevant genes. In addition, its expression increases under inflammatory conditions such as viral infection, rheumatoid arthritis and inflammatory bowel disease and its deficiency was shown to result in slightly increased sensitivity to influenza infection in mice. However, little else is known about its role in the immune system homeostasis and immune response. Here we show that similar to humans, LST1 is expressed in mice in the cells of the myeloid lineage. In vivo , its deficiency results in alterations in multiple leukocyte subset abundance in steady state and under inflammatory conditions. Moreover, LST1-deficient mice show significant level of resistance to dextran sodium sulphate (DSS) induced acute colitis, a model of inflammatory bowel disease. These data demonstrate that LST1 regulates leukocyte abundance in lymphoid organs and inflammatory response in the gut.
WBP1L regulates hematopoietic stem cell function and T cell development
WW domain binding protein 1-like (WBP1L), also known as outcome predictor of acute leukemia 1 (OPAL1), is a transmembrane adaptor protein, expression of which was shown to correlate with ETV6-RUNX1 translocation and favorable prognosis in childhood leukemia. It has a broad expression pattern in hematopoietic and non-hematopoietic cells. Our previous work described WBP1L as a regulator of CXCR4 signaling and hematopoiesis. Here, we show that hematopoiesis in the mice with Wbp1l germline deletion is dysregulated, already at the level of hematopoietic stem cells and early progenitors. We further demonstrate that thymi of WBP1L-deficient mice are significantly enlarged and contain increased numbers of thymocytes of all subsets. This can potentially be explained by increased generation of multipotent progenitors 4 (MPP4) in the bone marrow, from which the thymus-seeding progenitors are derived. We also observed increases in multiple cell types in the blood. In addition, we show that WBP1L regulates hematopoietic stem cell functionality and leukocyte progenitor proliferation and gene expression during hematopoietic stem and progenitor cell transplantation, which contribute to more efficient engraftment of WBP1L-deficient cells. WBP1L thus emerges as a regulator of hematopoietic stem and progenitor cell function, which controls leukocyte numbers at the steady state and after bone marrow transplantation.
Konkurenční schopnost podniků: výsledky empirického výzkumu
Publikace se věnuje konkurenceschopnosti podniku, přináší mimo jiné operacionalizaci konceptu konkurenceschopnosti a především aplikaci algoritmu sekvenčního dopředného plovoucího výběru. Obsahuje i průběžné výsledky výzkumu českých podniků.
Molecular interactions of adaptor protein PSTPIP2 control neutrophil-mediated responses leading to autoinflammation
Autoinflammatory diseases are characterized by dysregulation of innate immune system leading to spontaneous sterile inflammation. One of the well-established animal models of this group of disorders is the mouse strain . In this strain, the loss of adaptor protein PSTPIP2 leads to the autoinflammatory disease chronic multifocal osteomyelitis. It is manifested by sterile inflammation of the bones and surrounding soft tissues of the hind limbs and tail. The disease development is propelled by elevated production of IL-1β and reactive oxygen species by neutrophil granulocytes. However, the molecular mechanisms linking PSTPIP2 and these pathways have not been established. Candidate proteins potentially involved in these mechanisms include PSTPIP2 binding partners, PEST family phosphatases (PEST-PTPs) and phosphoinositide phosphatase SHIP1. To address the role of these proteins in PSTPIP2-mediated control of inflammation, we have generated mouse strains in which PEST-PTP or SHIP1 binding sites in PSTPIP2 have been disrupted. In these mouse strains, we followed disease symptoms and various inflammation markers. Our data show that mutation of the PEST-PTP binding site causes symptomatic disease, whereas mice lacking the SHIP1 interaction site remain asymptomatic. Importantly, both binding partners of PSTPIP2 contribute equally to the control of IL-1β production, while PEST-PTPs have a dominant role in the regulation of reactive oxygen species. In addition, the interaction of PEST-PTPs with PSTPIP2 regulates the production of the chemokine CXCL2 by neutrophils. Its secretion likely creates a positive feedback loop that drives neutrophil recruitment to the affected tissues. We demonstrate that PSTPIP2-bound PEST-PTPs and SHIP1 together control the IL-1β pathway. In addition, PEST-PTPs have unique roles in the control of reactive oxygen species and chemokine production, which in the absence of PEST-PTP binding to PSTPIP2 shift the balance towards symptomatic disease.
HIV-1 protease inhibitor mutations affect the development of HIV-1 resistance to the maturation inhibitor bevirimat
Background Maturation inhibitors are an experimental class of antiretrovirals that inhibit Human Immunodeficiency Virus (HIV) particle maturation, the structural rearrangement required to form infectious virus particles. This rearrangement is triggered by the ordered cleavage of the precursor Gag polyproteins into their functional counterparts by the viral enzyme protease. In contrast to protease inhibitors, maturation inhibitors impede particle maturation by targeting the substrate of protease (Gag) instead of the protease enzyme itself. Direct cross-resistance between protease and maturation inhibitors may seem unlikely, but the co-evolution of protease and its substrate, Gag, during protease inhibitor therapy, could potentially affect future maturation inhibitor therapy. Previous studies showed that there might also be an effect of protease inhibitor resistance mutations on the development of maturation inhibitor resistance, but the exact mechanism remains unclear. We used wild-type and protease inhibitor resistant viruses to determine the impact of protease inhibitor resistance mutations on the development of maturation inhibitor resistance. Results Our resistance selection studies demonstrated that the resistance profiles for the maturation inhibitor bevirimat are more diverse for viruses with a mutated protease compared to viruses with a wild-type protease. Viral replication did not appear to be a major factor during emergence of bevirimat resistance. In all in vitro selections, one of four mutations was selected: Gag V362I, A364V, S368N or V370A. The impact of these mutations on maturation inhibitor resistance and viral replication was analyzed in different protease backgrounds. The data suggest that the protease background affects development of HIV-1 resistance to bevirimat and the replication profiles of bevirimat-selected HIV-1. The protease-dependent bevirimat resistance and replication levels can be explained by differences in CA/p2 cleavage processing by the different proteases. Conclusions These findings highlight the complicated interactions between the viral protease and its substrate. By providing a better understanding of these interactions, we aim to help guide the development of second generation maturation inhibitors.
Konkurenční schopnost podniků
Corporate competitiveness has been an attention-attracting phenomenon for decades. Nonetheless, this publication aims to deepen its understanding. First and foremost, and as a major contribution, it brings the operationalization of the concept of competitiveness. However, its principal contribution is an application of the sequential forward flow search algorithm together with the nearest neighbors' classifier, the joint usage of which has managed to reduce potential competitiveness factors to the most informative ones, i.e. those that can in their combinations best discriminate between the less competitive and more competitive companies. Furthermore, the publication contains preliminary results of the research which means that it identifies possible competitiveness factors in Czech companies.