Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
150
result(s) for
"Jander, Georg"
Sort by:
Abscisic acid-regulated protein degradation causes osmotic stress-induced accumulation of branched-chain amino acids in Arabidopsis thaliana
2017
In response to several kinds of abiotic stress, plants greatly increase their accumulation of free amino acids. Although stress-induced proline increases have been studied the most extensively, the fold-increase of other amino acids, in particular branched-chain amino acids (BCAAs; leucine, isoleucine, and valine), is often higher than that of proline. In Arabidopsis thaliana (Arabidopsis), BCAAs accumulate in response to drought, salt, mannitol, polyethylene glycol, herbicide treatment, and nitrogen starvation. Plants that are deficient in abscisic acid signaling accumulate lower amounts of BCAAs, but not proline and most other amino acids. Previous bioinformatic studies had suggested that amino acid synthesis, rather than protein degradation, is responsible for the observed BCAA increase in osmotically stressed Arabidopsis. However, whereas treatment with the protease inhibitor MG132 decreased drought-induced BCAA accumulation, inhibition of BCAA biosynthesis with the acetolactate synthase inhibitors chlorsulfuron and imazapyr did not. Additionally, overexpression of BRAN-CHED-CHAIN AMINO ACID TRANSFERASE2 (BCAT2), which is upregulated in response to osmotic stress and functions in BCAA degradation, decreased drought-induced BCAA accumulation. Together, these results demonstrate that BCAA accumulation in osmotically stressed Arabidopsis is primarily the result of protein degradation. After relief of the osmotic stress, BCAA homeostasis is restored over time by amino acid degradation involving BCAT2. Thus, drought-induced BCAA accumulation is different from that of proline, which is accumulated due to de novo synthesis in an abscisic acid-independent manner and remains elevated for a more prolonged period of time after removal of the osmotic stress.
Journal Article
A Global Coexpression Network Approach for Connecting Genes to Specialized Metabolic Pathways in Plants
by
Borowsky, Alexander T.
,
Tzin, Vered
,
Rokas, Antonis
in
Computational Biology
,
Gene clusters
,
Gene expression
2017
Plants produce diverse specialized metabolites (SMs), but the genes responsible for their production and regulation remain largely unknown, hindering efforts to tap plant pharmacopeia. Given that genes comprising SM pathways exhibit environmentally dependent coregulation, we hypothesized that genes within a SM pathway would form tight associations (modules) with each other in coexpression networks, facilitating their identification. To evaluate this hypothesis, we used 10 global coexpression data sets, each a meta-analysis of hundreds to thousands of experiments, across eight plant species to identify hundreds of coexpressed gene modules per data set. In support of our hypothesis, 15.3 to 52.6% of modules contained two or more known SM biosynthetic genes, and module genes were enriched in SM functions. Moreover, modules recovered many experimentally validated SM pathways, including all six known to form biosynthetic gene clusters (BGCs). In contrast, bioinformatically predicted BGCs (i.e., those lacking an associated metabolite) were no more coexpressed than the null distribution for neighboring genes. These results suggest that most predicted plant BGCs are not genuine SM pathways and argue that BGCs are not a hallmark of plant specialized metabolism. We submit that global gene coexpression is a rich, largely untapped resource for discovering the genetic basis and architecture of plant natural products.
Journal Article
Rewiring of jasmonate and phytochrome B signalling uncouples plant growth-defense tradeoffs
by
Major, Ian T.
,
Campos, Marcelo L.
,
Yoshida, Yuki
in
38/91
,
60 APPLIED LIFE SCIENCES
,
631/449/1741/2671
2016
Plants resist infection and herbivory with innate immune responses that are often associated with reduced growth. Despite the importance of growth-defense tradeoffs in shaping plant productivity in natural and agricultural ecosystems, the molecular mechanisms that link growth and immunity are poorly understood. Here, we demonstrate that growth-defense tradeoffs mediated by the hormone jasmonate are uncoupled in an
Arabidopsis
mutant (
jazQ phyB
) lacking a quintet of Jasmonate ZIM-domain transcriptional repressors and the photoreceptor phyB. Analysis of epistatic interactions between
jazQ
and
phyB
reveal that growth inhibition associated with enhanced anti-insect resistance is likely not caused by diversion of photoassimilates from growth to defense but rather by a conserved transcriptional network that is hardwired to attenuate growth upon activation of jasmonate signalling. The ability to unlock growth-defense tradeoffs through relief of transcription repression provides an approach to assemble functional plant traits in new and potentially useful ways.
Plant immune responses are often associated with reduced growth. Here, the authors show that combining mutations in transcriptional repressors of the defense and light perception pathways can confer both robust growth and strong herbivore defense, demonstrating that growth-defense tradeoffs can be uncoupled.
Journal Article
Disruption of Ethylene Responses by Turnip mosaic virus Mediates Suppression of Plant Defense against the Green Peach Aphid Vector
by
Bak, Aurélie
,
De Alwis, Manori
,
Dong, Haili
in
Animals
,
Aphids - physiology
,
Aphids - virology
2015
Plants employ diverse responses mediated by phytohormones to defend themselves against pathogens and herbivores. Adapted pathogens and herbivores often manipulate these responses to their benefit. Previously, we demonstrated that Turnip mosaic virus (TuMV) infection suppresses callose deposition, an important plant defense induced in response to feeding by its aphid vector, the green peach aphid (Myzus persicae), and increases aphid fecundity compared with uninfected control plants. Further, we determined that production of a single TuMV protein, Nuclear Inclusion a-Protease (NIa-Pro) domain, was responsible for changes in host plant physiology and increased green peach aphid reproduction. To characterize the underlying molecular mechanisms of this phenomenon, we examined the role of three phytohormone signaling pathways, jasmonic acid, salicylic acid, and ethylene (ET), in TuMV-infected Arabidopsis (Arabidopsis thaliana), with or without aphid herbivory. Experiments with Arabidopsis mutants ethylene insensitive2 and ethylene response1, and chemical inhibitors of ET synthesis and perception (aminoethoxyvinyl-glycine and 1-methylcyclopropene, respectively), show that the ET signaling pathway is required for TuMV-mediated suppression of Arabidopsis resistance to the green peach aphid. Additionally, transgenic expression of NIa-Pro in Arabidopsis alters ET responses and suppresses aphid-induced callose formation in an ET-dependent manner. Thus, disruption of ET responses in plants is an additional function of NIa-Pro, a highly conserved potyvirus protein. Virus-induced changes in ET responses may mediate vector-plant interactions more broadly and thus represent a conserved mechanism for increasing transmission by insect vectors across generations.
Journal Article
Success and limitations in adaptation of Fast-TrACC tissue culture-independent transformation in coffee, cotton, and tree tobacco
by
Negin, Boaz
,
Daniela Martin-Lesmes, Laura
,
Jander, Georg
in
Adaptation
,
Agricultural research
,
Biology and Life Sciences
2025
Plant transformation is a critical process for generating transgenic and genome-edited plants for use in research and agriculture. For most plant species, this process has traditionally involved genomic insertion of DNA in tissue culture and regeneration of transformed plants through hormonal induction. Recently, methods for plant transformation in a tissue culture-independent manner, through the expression of growth regulators, have been published. We attempted to adapt this promising approach to three woody species, coffee ( Coffea arabica ), cotton ( Gossypium hirsutum ), and tree tobacco ( Nicotiana glauca ), using a combination of Agrobacterium strains, plasmid systems, and different promoters driving the expression of ZmWUS2 and AtIPT , which were originally adapted for this purpose in Nicotiana benthamiana . We found that tree tobacco was amenable to tissue culture-independent transformation but had difficulty developing transgenic seeds. Coffee was not receptive to this transformation method, and cotton was amenable to callus formation but did not exhibit gene insertions in the newly-formed shoots. These limitations are partially technical, such as maize WUS not affecting coffee similarly to other plants, but are in part fundamental setbacks in the use of growth regulators to drive tissue culture-independent transformation. We suggest how these drawbacks can be overcome in the future through the use of inducible or tissue-specific promoters and other means.
Journal Article
Independent evolution of ancestral and novel defenses in a genus of toxic plants (Erysimum, Brassicaceae)
by
Mabry, Makenzie E
,
Kumar, Pavan
,
Holland, Cynthia K
in
Brassicaceae
,
cardenolides
,
Chemical defense
2020
Phytochemical diversity is thought to result from coevolutionary cycles as specialization in herbivores imposes diversifying selection on plant chemical defenses. Plants in the speciose genus Erysimum (Brassicaceae) produce both ancestral glucosinolates and evolutionarily novel cardenolides as defenses. Here we test macroevolutionary hypotheses on co-expression, co-regulation, and diversification of these potentially redundant defenses across this genus. We sequenced and assembled the genome of E. cheiranthoides and foliar transcriptomes of 47 additional Erysimum species to construct a phylogeny from 9868 orthologous genes, revealing several geographic clades but also high levels of gene discordance. Concentrations, inducibility, and diversity of the two defenses varied independently among species, with no evidence for trade-offs. Closely related, geographically co-occurring species shared similar cardenolide traits, but not glucosinolate traits, likely as a result of specific selective pressures acting on each defense. Ancestral and novel chemical defenses in Erysimum thus appear to provide complementary rather than redundant functions. Plants are often attacked by insects and other herbivores. As a result, they have evolved to defend themselves by producing many different chemicals that are toxic to these pests. As producing each chemical costs energy, individual plants often only produce one type of chemical that is targeted towards their main herbivore. Related species of plants often use the same type of chemical defense so, if a particular herbivore gains the ability to cope with this chemical, it may rapidly become an important pest for the whole plant family. To escape this threat, some plants have gained the ability to produce more than one type of chemical defense. Wallflowers, for example, are a group of plants in the mustard family that produce two types of toxic chemicals: mustard oils, which are common in most plants in this family; and cardenolides, which are an innovation of the wallflowers, and which are otherwise found only in distantly related plants such as foxglove and milkweed. The combination of these two chemical defenses within the same plant may have allowed the wallflowers to escape attacks from their main herbivores and may explain why the number of wallflower species rapidly increased within the last two million years. Züst et al. have now studied the diversity of mustard oils and cardenolides present in many different species of wallflower. This analysis revealed that almost all of the tested wallflower species produced high amounts of both chemical defenses, while only one species lacked the ability to produce cardenolides. The levels of mustard oils had no relation to the levels of cardenolides in the tested species, which suggests that the regulation of these two defenses is not linked. Furthermore, Züst et al. found that closely related wallflower species produced more similar cardenolides, but less similar mustard oils, to each other. This suggests that mustard oils and cardenolides have evolved independently in wallflowers and have distinct roles in the defense against different herbivores. The evolution of insect resistance to pesticides and other toxins is an important concern for agriculture. Applying multiple toxins to crops at the same time is an important strategy to slow the evolution of resistance in the pests. The findings of Züst et al. describe a system in which plants have naturally evolved an equivalent strategy to escape their main herbivores. Understanding how plants produce multiple chemical defenses, and the costs involved, may help efforts to breed crop species that are more resistant to herbivores and require fewer applications of pesticides.
Journal Article
Herbivory in the Previous Generation Primes Plants for Enhanced Insect Resistance
by
Halitschke, Rayko
,
Sun, Joel Y.
,
Tian, Donglan
in
Acetates
,
Acetates - metabolism
,
Agronomy. Soil science and plant productions
2012
Inducible defenses, which provide enhanced resistance after initial attack, are nearly universal in plants. This defense signaling cascade is mediated by the synthesis, movement, and perception of jasmonic acid and related plant metabolites. To characterize the long-term persistence of plant immunity, we challenged Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) with caterpillar herbivory, application of methyl jasmonate, or mechanical damage during vegetative growth and assessed plant resistance in subsequent generations. Here, we show that induced resistance was associated with transgenerational priming of jasmonic acid-dependent defense responses in both species, caused caterpillars to grow up to 50% smaller than on control plants, and persisted for two generations in Arabidopsis. Arabidopsis mutants that are deficient in jasmonate perception (coronatine insensitive1) or in the biogenesis of small interfering RNA (dicer-like2 dicer-like3 dicer-like4 and RNA polymerase d2a nuclear RNA polymerase d2b) do not exhibit inherited resistance. The observation of inherited resistance both the Brassicaceae and Solanaceae suggests that this trait may be more widely distributed in plants. Epigenetic resistance to herbivory thus represents a phenotypically plastic mechanism for enhanced defense across generations.
Journal Article
Horizontally transferred genes as RNA interference targets for aphid and whitefly control
2023
Summary RNA interference (RNAi)‐based technologies are starting to be commercialized as a new approach for agricultural pest control. Horizontally transferred genes (HTGs), which have been transferred into insect genomes from viruses, bacteria, fungi or plants, are attractive targets for RNAi‐mediated pest control. HTGs are often unique to a specific insect family or even genus, making it unlikely that RNAi constructs targeting such genes will have negative effects on ladybugs, lacewings and other beneficial predatory insect species. In this study, we sequenced the genome of a red, tobacco‐adapted isolate of Myzus persicae (green peach aphid) and bioinformatically identified 30 HTGs. We then used plant‐mediated virus‐induced gene silencing (VIGS) to show that several HTGs of bacterial and plant origin are important for aphid growth and/or survival. Silencing the expression of fungal‐origin HTGs did not affect aphid survivorship but decreased aphid reproduction. Importantly, although there was uptake of plant‐expressed RNA by Coccinella septempunctata (seven‐spotted ladybugs) via the aphids that they consumed, we did not observe negative effects on ladybugs from aphid‐targeted VIGS constructs. To demonstrate that this approach is more broadly applicable, we also targeted five Bemisia tabaci (whitefly) HTGs using VIGS and demonstrated that knockdown of some of these genes affected whitefly survival. As functional HTGs have been identified in the genomes of numerous pest species, we propose that these HTGs should be explored further as efficient and safe targets for control of insect pests using plant‐mediated RNA interference.
Journal Article
Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress
2010
Pathways regulating threonine, methionine and isoleucine metabolism are very efficiently interconnected in plants. As both threonine and methionine serve as substrates for isoleucine synthesis, their synthesis and catabolism under different developmental and environmental conditions also influence isoleucine availability. Together, methionine gamma-lyase and threonine deaminase maintain the isoleucine equilibrium in plants under varied substrate availabilities. Isoleucine and the two other branched-chain amino acids (BCAAs) (leucine and valine) share four common enzymes in their biosynthesis pathways and thus are coordinately regulated. Induction of free amino acids as osmolytes in response to abiotic stress is thought to play a role in plant stress tolerance. In particular, the accumulation of BCAAs is induced many-fold during osmotic stress. However, unlike in the case of proline, not much research has been focused on understanding the function of the response involving BCAAs. This review describes pathways influencing branched-chain amino acid metabolism and what is known about the biological significance of their accumulation under abiotic stress. A bioinformatics approach to understanding the transcriptional regulation of the genes involved in amino acid metabolism under abiotic stress is also presented.
Journal Article
Insecticide Resistance Mechanisms in the Green Peach Aphid Myzus persicae (Hemiptera: Aphididae) I: A Transcriptomic Survey
by
Samaniego, Horacio
,
Silva, Andrea X.
,
Ramsey, John S
in
Acetylcholinesterase
,
Acids
,
Adaptation
2012
Insecticide resistance is one of the best examples of rapid micro-evolution found in nature. Since the development of the first synthetic insecticide in 1939, humans have invested considerable effort to stay ahead of resistance phenotypes that repeatedly develop in insects. Aphids are a group of insects that have become global pests in agriculture and frequently exhibit insecticide resistance. The green peach aphid, Myzus persicae, has developed resistance to at least seventy different synthetic compounds, and different insecticide resistance mechanisms have been reported worldwide.
To further characterize this resistance, we analyzed genome-wide transcriptional responses in three genotypes of M. persicae, each exhibiting different resistance mechanisms, in response to an anti-cholinesterase insecticide. The sensitive genotype (exhibiting no resistance mechanism) responded to the insecticide by up-regulating 183 genes primarily ones related to energy metabolism, detoxifying enzymes, proteins of extracellular transport, peptidases and cuticular proteins. The second genotype (resistant through a kdr sodium channel mutation), up-regulated 17 genes coding for detoxifying enzymes, peptidase and cuticular proteins. Finally, a multiply resistant genotype (carrying kdr and a modified acetylcholinesterase), up-regulated only 7 genes, appears not to require induced insecticide detoxification, and instead down-regulated many genes.
This study suggests strongly that insecticide resistance in M. persicae is more complex that has been described, with the participation of a broad array of resistance mechanisms. The sensitive genotype exhibited the highest transcriptional plasticity, accounting for the wide range of potential adaptations to insecticides that this species can evolve. In contrast, the multiply resistant genotype exhibited a low transcriptional plasticity, even for the expression of genes encoding enzymes involved in insecticide detoxification. Our results emphasize the value of microarray studies to search for regulated genes in insects, but also highlights the many ways those different genotypes can assemble resistant phenotypes depending on the environmental pressure.
Journal Article