Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
18
result(s) for
"Jank, Michael P. M."
Sort by:
Highly accurate determination of heterogeneously stacked Van-der-Waals materials by optical microspectroscopy
by
Hutzler, Andreas
,
Fritsch, Birk
,
Matthus, Christian D.
in
639/624
,
639/624/1107/328
,
639/624/1107/510
2020
The composition of Van-der-Waals heterostructures is conclusively determined using a hybrid evaluation scheme of data acquired by optical microspectroscopy. This scheme deploys a parameter set comprising both change in reflectance and wavelength shift of distinct extreme values in reflectance spectra. Furthermore, the method is supported by an accurate analytical model describing reflectance of multilayer systems acquired by optical microspectroscopy. This approach allows uniquely for discrimination of 2D materials like graphene and hexagonal boron nitride (hBN) and, thus, quantitative analysis of Van-der-Waals heterostructures containing structurally very similar materials. The physical model features a transfer-matrix method which allows for flexible, modular description of complex optical systems and may easily be extended to individual setups. It accounts for numerical apertures of applied objective lenses and a glass fiber which guides the light into the spectrometer by two individual weighting functions. The scheme is proven by highly accurate quantification of the number of layers of graphene and hBN in Van-der-Waals heterostructures. In this exemplary case, the fingerprint of graphene involves distinct deviations of reflectance accompanied by additional wavelength shifts of extreme values. In contrast to graphene, the fingerprint of hBN reveals a negligible deviation in absolute reflectance causing this material being only detectable by spectral shifts of extreme values.
Journal Article
Simulation-Guided Analysis towards Trench Depth Optimization for Enhanced Flexibility in Stretch-Free, Shape-Induced Interconnects for Flexible Electronics
by
Joch, Daniel
,
Lang, Thomas
,
Sanctis, Shawn
in
Advanced manufacturing technologies
,
Analysis
,
Bridges
2024
In this paper, we present an optimization of the planar manufacturing scheme for stretch-free, shape-induced metal interconnects to simplify fabrication with the aim of maximizing the flexibility in a structure regarding stress and strain. The formation of trenches between silicon islands is actively used in the lithographic process to create arc shape structures by spin coating resists into the trenches. The resulting resist form is used as a template for the metal lines, which are structured on top. Because this arc shape is beneficial for the flexibility of these bridges. The trench depth as a key parameter for the stress distribution is investigated by applying numerical simulations. The simulated results show that the increase in penetration depth of the metal bridge into the trench increases the tensile load which is converted into a shear force Q(x), that usually leads to increased strains the structure can generate. For the fabrication, the filling of the trenches with resists is optimized by varying the spin speed. Compared to theoretical resistance, the current–voltage measurements of the metal bridges show a similar behavior and almost every structural variation is capable of functioning as a flexible electrical interconnect in a complete island-bridge array.
Journal Article
Flexographic printing of nanoparticulate tin-doped indium oxide inks on PET foils and glass substrates
by
Liu, Xinxin
,
Spiehl, Dieter
,
Schmidt, Michael
in
Characterization and Evaluation of Materials
,
Chemistry and Materials Science
,
Classical Mechanics
2016
This contribution deals with flexographic printing of nanoparticulate tin-doped indium oxide (ITO) inks for the manufacture of fine lines on PET foils and glass substrates. The development and optimization of ITO inks, based on solutions of water and ethanol, for the flexographic printing process is presented. The influence of the solvent composition, of the particle content, and of the molar mass of the binder polyvinylpyrrolidone on the printing result is shown. ITO lines with a minimum line width of around 120 μm were printed using a printing plate with a feature size of 50 μm; the ITO lines exhibited a thickness of around 1 μm. Laser post-treatment was used to consolidate the top layer of the nanoparticulate ITO structures resulting in improved electrical properties; low sheet resistance values of around 300 Ω/□ were achieved.
Journal Article
Radiolysis‐Driven Evolution of Gold Nanostructures – Model Verification by Scale Bridging In Situ Liquid‐Phase Transmission Electron Microscopy and X‐Ray Diffraction
by
Virtanen, Sannakaisa
,
Fritsch, Birk
,
Bruns, Mark P.
in
Automation
,
Chemical reactions
,
Chemistry
2022
Utilizing ionizing radiation for in situ studies in liquid media enables unique insights into nanostructure formation dynamics. As radiolysis interferes with observations, kinetic simulations are employed to understand and exploit beam‐liquid interactions. By introducing an intuitive tool to simulate arbitrary kinetic models for radiation chemistry, it is demonstrated that these models provide a holistic understanding of reaction mechanisms. This is shown for irradiated HAuCl4 solutions allowing for quantitative prediction and tailoring of redox processes in liquid‐phase transmission electron microscopy (LP‐TEM). Moreover, it is demonstrated that kinetic modeling of radiation chemistry is applicable to investigations utilizing X‐rays such as X‐ray diffraction (XRD). This emphasizes that beam‐sample interactions must be considered during XRD in liquid media and shows that reaction kinetics do not provide a threshold dose rate for gold nucleation relevant to LP‐TEM and XRD. Furthermore, it is unveiled that oxidative etching of gold nanoparticles depends on both, precursor concentration, and dose rate. This dependency is exploited to probe the electron beam‐induced shift in Gibbs free energy landscape by analyzing critical radii of gold nanoparticles. In situ investigations of liquid specimen via ionizing radiation provide unequaled information but suffer from radiolysis governing the observations. However, by suitable kinetic models these effects can be accounted for. This is herein demonstrated on HAuCl4‐solutions by comparison with scale‐bridging liquid‐phase transmission electron microscopy (LP‐TEM) and X‐ray diffraction (XRD) experiments. Moreover, a workflow is proposed to draw meaningful conclusions even under high dose rate conditions.
Journal Article
Goethite Mineral Dissolution to Probe the Chemistry of Radiolytic Water in Liquid‐Phase Transmission Electron Microscopy
2023
Liquid‐Phase Transmission Electron Microscopy (LP‐TEM) enables in situ observations of the dynamic behavior of materials in liquids at high spatial and temporal resolution. During LP‐TEM, incident electrons decompose water molecules into highly reactive species. Consequently, the chemistry of the irradiated aqueous solution is strongly altered, impacting the reactions to be observed. However, the short lifetime of these reactive species prevent their direct study. Here, the morphological changes of goethite during its dissolution are used as a marker system to evaluate the influence of radiation on the changes in solution chemistry. At low electron flux density, the morphological changes are equivalent to those observed under bulk acidic conditions, but the rate of dissolution is higher. On the contrary, at higher electron fluxes, the morphological evolution does not correspond to a unique acidic dissolution process. Combined with kinetic simulations of the steady state concentrations of generated reactive species in the aqueous medium, the results provide a unique insight into the redox and acidity interplay during radiation induced chemical changes in LP‐TEM. The results not only reveal beam‐induced radiation chemistry via a nanoparticle indicator, but also open up new perspectives in the study of the dissolution process in industrial or natural settings. In situ Liquid‐Phase Transmission Electron Microscopy observations of the morphological changes of goethite nanoparticles during its dissolution are used to evaluate the influence of radiation on changes in solution chemistry. The results not only reveal beam‐induced radiation chemistry via a nanoparticulate indicator, but also open up new perspectives in the study of dissolution processes in industrial and natural settings.
Journal Article
Screen-Printed Sensor for Low-Cost Chloride Analysis in Sweat for Rapid Diagnosis and Monitoring of Cystic Fibrosis
by
Maier, Christoph
,
Brinkmann, Folke
,
Jank, Michael P. M.
in
Biosensing Techniques
,
Biosensors
,
Calibration
2020
Analysis of sweat chloride levels in cystic fibrosis (CF) patients is essential not only for diagnosis but also for the monitoring of therapeutic responses to new drugs, such as cystic fibrosis transmembrane conductance regulator (CFTR) modulators and potentiators. Using iontophoresis as the gold standard can cause complications like burns, is uncomfortable, and requires repetitive hospital visits, which can be particularly problematic during a pandemic, where distancing and hygiene requirements are increased; therefore, it is necessary to develop fast and simple measures for the diagnosis and monitoring of CF. A screen-printed, low-cost chloride sensor was developed to remotely monitor CF patients. Using potentiometric measurements, the performance of the sensor was tested. It showed good sensitivity and a detection limit of 2.7 × 10−5 mol/L, which covered more than the complete concentration range of interest for CF diagnosis. Due to its fast response of 30 s, it competes well with standard sensor systems. It also offers significantly reduced costs and can be used as a portable device. The analysis of real sweat samples from healthy subjects, as well as CF patients, demonstrates a proper distinction using the screen-printed sensor. This approach presents an attractive remote measurement alternative for fast, simple, and low-cost CF diagnosis and monitoring
Journal Article
Low-Temperature and UV Irradiation Effect on Transformation of Zirconia -MPS nBBs-Based Gels into Hybrid Transparent Dielectric Thin Films
by
Timpu, Daniel
,
Muşat, Viorica
,
Anghel, Elena Maria
in
Chemical vapor deposition
,
Coupling agents
,
Dielectric properties
2022
Bottom-up approaches in solutions enable the low-temperature preparation of hybrid thin films suitable for printable transparent and flexible electronic devices. We report the obtainment of new transparent PMMA/ZrO2 nanostructured -building blocks (nBBs) hybrid thin films (61–75 nm) by a modified sol-gel method using zirconium ethoxide, Zr(OEt)4, and 3-methacryloxypropyl trimethoxysilane (MPS) as a coupling agent and methylmethacrylate monomer (MMA). The effect of low-temperature and UV irradiation on the nBBs gel films is discussed. The thermal behaviors of the hybrid sols and as-deposed gel films were investigated by modulated thermogravimetric (mTG) and differential scanning calorimetry (DSC) analysis. The chemical structure of the resulted films was elucidated by X-ray photoelectron (XPS), infrared (IR) and Raman spectroscopies. Their morphology and crystalline structure were observed by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and grazing incidence X-ray diffraction. The cured films show zirconia nanocrystallites of 2–4 nm in the hybrid matrix and different self-assembled structures for 160 °C or UV treatment; excellent dielectric behavior, with dielectric constant values within 6.7–17.9, depending on the Zr(OEt)4:MMA molar ratio, were obtained.
Journal Article
Laser Melting of Nanoparticulate Transparent Conductive Oxide Thin Films
by
Baum, Marcus
2013
Layers of ZnO nanoparticles with thicknesses of about 40 nm were prepared on silicon substrates. The layers were irradiated by single pulses of a 248 nm excimer laser, which proofed suitable for consolidation and significant densification of the particle layers under ambient conditions. Experiments as well as simulations have confirmed that the application of a Si02 particle layer between the substrate and the ZnO particle layer can be used to hamper heat transfer towards the substrate. Thus the ZnO layer can be thermally insulated from the substrate while heating the ZnO up to its extremely high melting point. Consequently, such a layer stack could enable the application of consolidated particle layers on temperature-sensitive carrier substrates such as polymer foils which are to be used in low-cost mass production of devices like displays or solar cells. [PUBLICATION ABSTRACT]
Journal Article