Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
123
result(s) for
"Janku, Filip"
Sort by:
Targeting the PI3K pathway in cancer: are we making headway?
by
Meric-bernstam, Funda
,
Yap, Timothy A
,
Janku, Filip
in
1-Phosphatidylinositol 3-kinase
,
AKT protein
,
Biomarkers
2018
The PI3K-AKT-mTOR pathway is one of the most frequently dysregulated pathways in cancer and, consequently, more than 40 compounds that target key components of this signalling network have been tested in clinical trials involving patients with a range of different cancers. The clinical development of many of these agents, however, has not advanced to late-phase randomized trials, and the antitumour activity of those that have been evaluated in comparative prospective studies has typically been limited, or toxicities were found to be prohibitive. Nevertheless, the mTOR inhibitors temsirolimus and everolimus and the PI3K inhibitors idelalisib and copanlisib have been approved by the FDA for clinical use in the treatment of a number of different cancers. Novel compounds with greater potency and selectivity, as well as improved therapeutic indices owing to reduced risks of toxicity, are clearly required. In addition, biomarkers that are predictive of a response, such as PIK3CA mutations for inhibitors of the PI3K catalytic subunit α isoform, must be identified and analytically and clinically validated. Finally, considering that oncogenic activation of the PI3K-AKT-mTOR pathway often occurs alongside pro-tumorigenic aberrations in other signalling networks, rational combinations are also needed to optimize the effectiveness of treatment. Herein, we review the current experience with anticancer therapies that target the PI3K-AKT-mTOR pathway.
Journal Article
Tumor heterogeneity in the clinic: is it a real problem?
2014
Tumor heterogeneity is one of the major problems limiting the efficacy of targeted therapies and compromising treatment outcomes. A better understanding of tumor biology has advanced our knowledge of the molecular landscape of cancer to an unprecedented level. However, most patients with advanced cancers treated with appropriately selected targeted therapies become resistant to the therapy, ultimately developing disease progression and succumbing to metastatic disease. Multiple factors account for therapeutic failures, which include cancer cells accumulating new molecular aberrations as a consequence of tumor progression and selection pressure of cancer therapies. Therefore, single agent targeted therapies, often administered in advanced stages, are unlikely to have a sufficiently lethal effect in most cancers. Finally, the molecular profile of cancer can change over time, which we are not able to monitor with existing strategies using tumor tissue biopsies as the gold standard for molecular diagnostics. Novel technologies focusing on testing low-risk, easily obtainable material, such as molecular cell-free DNA from plasma, can fill that gap and allow personalized therapy to be delivered in real time.
Journal Article
Signed in Blood: Circulating Tumor DNA in Cancer Diagnosis, Treatment and Screening
2021
With the addition of molecular testing to the oncologist’s diagnostic toolbox, patients have benefitted from the successes of gene- and immune-directed therapies. These therapies are often most effective when administered to the subset of malignancies harboring the target identified by molecular testing. An important advance in the application of molecular testing is the liquid biopsy, wherein circulating tumor DNA (ctDNA) is analyzed for point mutations, copy number alterations, and amplifications by polymerase chain reaction (PCR) and/or next-generation sequencing (NGS). The advantages of evaluating ctDNA over tissue DNA include (i) ctDNA requires only a tube of blood, rather than an invasive biopsy, (ii) ctDNA can plausibly reflect DNA shedding from multiple metastatic sites while tissue DNA reflects only the piece of tissue biopsied, and (iii) dynamic changes in ctDNA during therapy can be easily followed with repeat blood draws. Tissue biopsies allow comprehensive assessment of DNA, RNA, and protein expression in the tumor and its microenvironment as well as functional assays; however, tumor tissue acquisition is costly with a risk of complications. Herein, we review the ways in which ctDNA assessment can be leveraged to understand the dynamic changes of molecular landscape in cancers.
Journal Article
First-in-human evaluation of the novel mitochondrial complex I inhibitor ASP4132 for treatment of cancer
2021
SummaryBackground We assessed the safety, tolerability, and pharmacokinetics of mitochondrial complex 1 inhibitor ASP4132. Methods This phase I dose-escalation/dose-expansion study enrolled patients with treatment refractory advanced solid tumors to assess safety, dose-limiting toxicities (DLTs), efficacy and pharmacokinetic or oral ASP4132. Results Overall, 39 patients received ASP4132. Acceptable tolerability of ASP4132 5 mg in the first patient led to enrollment in the 10-mg dose cohort. After two DLTs at the 10-mg dose, additional patients were enrolled in the 5-mg cohort; a 7.5-mg cohort and two intermittent-dosing cohorts (ASP4132 10 mg for 3 days, then 4 days off; ASP4132 15 mg for 1 day, then 6 days off). ASP4132 5 mg was well tolerated; however, multiple DLTs such as fatigue, mental status changes, dizziness, lactic acidosis, enteritis, and posterior reversible encephalopathy syndrome were observed in higher dose cohorts (7.5-mg and intermittent 10-mg and 15-mg dose cohorts). Stable disease (+ 4 % to + 15 %) was observed in 8/39 (20.5 %) patients. ASP4132 plasma pharmacokinetics were characterized by high variability, with rapid absorption and accumulation from slow elimination. Conclusions ASP4132 showed limited clinical activity, and DLTs prohibited dose escalation. Further research is required to determine if DLTs will limit clinical activity of other mitochondrial complex I inhibitors. Clinical Trial ID (clinicaltrials.gov): NCT02383368, March 9, 2015.
Journal Article
Pembrolizumab in vaginal and vulvar squamous cell carcinoma: a case series from a phase II basket trial
by
How, Jeffrey A.
,
Soliman, Pamela T.
,
Gong, Jing
in
692/4028/67/1059/2325
,
692/4028/67/1517
,
Carboplatin
2021
Vaginal and vulvar squamous cell carcinoma (SCC) are rare tumors that can be challenging to treat in the recurrent or metastatic setting. We present a case series of patients with vaginal or vulvar SCC who were treated with single-agent pembrolizumab as part of a phase II basket clinical trial to evaluate efficacy and safety. Two cases of recurrent and metastatic vaginal SCC, with multiple prior lines of systemic chemotherapy and radiation, received pembrolizumab. One patient had significant reduction (81%) in target tumor lesions prior to treatment discontinuation at cycle 10 following confirmed progression of disease with new metastatic lesions (stable disease by irRECIST criteria). In contrast, the other patient with vaginal SCC discontinued treatment after cycle 3 due to disease progression. Both patients had PD-L1 positive vaginal tumors and tolerated treatment well. One case of recurrent vulvar SCC with multiple surgical resections and prior progression on systemic carboplatin had a 30% reduction in her target tumor lesions following pembrolizumab treatment with a PD-L1 positive tumor. Treatment was discontinued for grade 3 mucositis after cycle 5. Pembrolizumab may provide some clinical benefit to some patients with vaginal or vulvar SCC and is overall safe to utilize in this population. Future studies are needed to evaluate the efficacy of pembrolizumab in these rare tumor types and to identify predictive biomarkers of response.
Journal Article
Mutation Profiling in Cholangiocarcinoma: Prognostic and Therapeutic Implications
2014
Cholangiocarcinoma (CCA) is clinically heterogeneous; intra and extrahepatic CCA have diverse clinical presentations. Next generation sequencing (NGS) technology may identify the genetic differences between these entities and identify molecular subgroups for targeted therapeutics.
We describe successful NGS-based testing of 75 CCA patients along with the prognostic and therapeutic implications of findings. Mutation profiling was performed using either a) NGS panel of hotspot regions in 46 cancer-related genes using a 318-chip on Ion PGM Sequencer or b) Illumina HiSeq 2000 sequencing platform for 3,769 exons of 236 cancer-related genes plus 47 introns from 19 genes to an average depth of 1000X. Clinical data was abstracted and correlated with clinical outcome. Patients with targetable mutations were referred to appropriate clinical trials.
There were significant differences between intrahepatic (n = 55) and extrahepatic CCA (n = 20) in regard to the nature and frequency of the genetic aberrations (GAs). IDH1 and DNA repair gene alterations occurred more frequently in intrahepatic CCA, while ERBB2 GAs occurred in the extrahepatic group. Commonly occurring GAs in intrahepatic CCA were TP53 (35%), KRAS (24%), ARID1A (20%), IDH1 (18%), MCL1 (16%) and PBRM1 (11%). Most frequent GAs in extrahepatic CCA (n = 20) were TP53 (45%), KRAS (40%), ERBB2 (25%), SMAD4 (25%), FBXW7 (15%) and CDKN2A (15%). In intrahepatic CCA, KRAS, TP53 or MAPK/mTOR GAs were significantly associated with a worse prognosis while FGFR GAs correlated with a relatively indolent disease course. IDH1 GAs did not have any prognostic significance. GAs in the chromatin modulating genes, BAP1 and PBRM1 were associated with bone metastases and worse survival in extrahepatic CCA. Radiologic responses and clinical benefit was noted with EGFR, FGFR, C-met, B-RAF and MEK inhibitors.
There are significant genetic differences between intra and extrahepatic CCA. NGS can potentially identify disease subsets with distinct prognostic and therapeutic implications.
Journal Article
Associations between the gut microbiome and fatigue in cancer patients
2021
Fatigue is the most prevalent symptom of cancer and its treatments. Changes in the intestinal microbiome have been identified in chronic fatigue syndrome and other neuropsychiatric disorders, and cancer patients. However, the association between intestinal microbiome and fatigue in patients with advanced cancers has not been evaluated. Understanding the connection between intestinal microbiome and fatigue will provide interventional and therapeutic opportunities to manipulate the microbiome to improve fatigue and other patients’ reported outcomes. In this project, we aimed to identify associations between microbiome composition and fatigue in advanced cancer patients. In this cross-sectional observational study at a tertiary cancer care center, we included 88 patients with advanced, metastatic, unresectable cancers who were in a washout period from chemotherapy. We measured fatigue using the MD Anderson Symptom Inventory—Immunotherapy fatigue score, and used 16srRNA to analyze intestinal microbiome. Using correlation analysis we found that
Eubacterium hallii
was negatively associated with fatigue severity scores (r = − 0.30, p = 0.005), whereas
Cosenzaea
was positively associated with fatigue scores (r = 0.33, p = 0.0002). We identified microbial species that exhibit distinct composition between high-fatigued and low-fatigued cancer patients. Further studies are warranted to investigate whether modulating the microbiome reduces cancer patients’ fatigue severity and improves their quality of life.
Journal Article
ALK fusions in the pan-cancer setting: another tumor-agnostic target?
2023
Anaplastic lymphoma kinase (
ALK
) alterations (activating mutations, amplifications, and fusions/rearrangements) occur in ~3.3% of cancers.
ALK
fusions/rearrangements are discerned in >50% of inflammatory myofibroblastic tumors (IMTs) and anaplastic large cell lymphomas (ALCLs), but only in ~0.2% of other cancers outside of non-small cell lung cancer (NSCLC), a rate that may be below the viability threshold of even large-scale treatment trials. Five ALK inhibitors –alectinib, brigatinib, ceritinb, crizotinib, and lorlatinib—are FDA approved for
ALK
-aberrant NSCLCs, and crizotinib is also approved for
ALK
-aberrant IMTs and ALCL, including in children. Herein, we review the pharmacologic tractability of
ALK
alterations, focusing beyond NSCLC. Importantly, the hallmark of approved indications is the presence of
ALK
fusions/rearrangements, and response rates of ~50–85%. Moreover, there are numerous reports of ALK inhibitor activity in multiple solid and hematologic tumors (e.g., histiocytosis, leiomyosarcoma, lymphoma, myeloma, and colorectal, neuroendocrine, ovarian, pancreatic, renal, and thyroid cancer) bearing
ALK
fusions/rearrangements. Many reports used crizotinib or alectinib, but each of the approved ALK inhibitors have shown activity. ALK inhibitor activity is also seen in neuroblastoma, which bear
ALK
mutations (rather than fusions/rearrangements), but response rates are lower (~10–20%). Current data suggests that ALK inhibitors have tissue-agnostic activity in neoplasms bearing
ALK
fusions/rearrangements.
Journal Article
A novel method for liquid-phase extraction of cell-free DNA for detection of circulating tumor DNA
by
Chiu, Ricky Y. T.
,
Call, S. Greg
,
Janku, Filip
in
631/67/1857
,
692/4028/67
,
Biomarkers, Tumor
2021
Low yields of extracted cell-free DNA (cfDNA) from plasma limit continued development of liquid biopsy in cancer, especially in early-stage cancer diagnostics and cancer screening applications. We investigate a novel liquid-phase-based DNA isolation method that utilizes aqueous two-phase systems to purify and concentrate circulating cfDNA. The PHASIFY MAX and PHASIFY ENRICH kits were compared to a commonly employed solid-phase extraction method on their ability to extract cfDNA from a set of 91 frozen plasma samples from cancer patients. Droplet digital PCR (ddPCR) was used as the downstream diagnostic to detect mutant copies. Compared to the QIAamp Circulating Nucleic Acid (QCNA) kit, the PHASIFY MAX method demonstrated 60% increase in DNA yield and 171% increase in mutant copy recovery, and the PHASIFY ENRICH kit demonstrated a 35% decrease in DNA yield with a 153% increase in mutant copy recovery. A follow-up study with PHASIFY ENRICH resulted in the positive conversion of 9 out of 47 plasma samples previously determined negative with QCNA extraction (all with known positive tissue genotyping). Our results indicate that this novel extraction technique offers higher cfDNA recovery resulting in better sensitivity for detection of cfDNA mutations compared to a commonly used solid-phase extraction method.
Journal Article
Clinical characteristics and outcomes of phase I cancer patients with CCNE1 amplification: MD Anderson experiences
2022
Cyclin E is frequently encoded by CCNE1 gene amplification in various malignancies. We reviewed the medical records of patients with solid tumors displaying CCNE1 amplification to determine the effect of this amplification for future therapeutic development. We reviewed the medical records of patients with advanced solid tumors harboring CCNE1 amplification who were seen at the phase I clinic between September 1, 2012, and December 31, 2019. Among 79 patients with solid tumors harboring CCNE1 amplification, 56 (71%) received phase 1 clinical trial therapy, 39 (49%) had 3 or more concurrent genomic aberrances, and 52 (66%) had a concurrent TP53 mutation. The median overall survival (OS) after patients’ initial phase I visit was 8.9 months and after their initial metastasis diagnosis was 41.4 months. We identified four factors associated with poor risk: age < 45 years, body mass index ≥ 25 kg/m
2
, presence of the TP53 mutation, and elevated LDH > upper limit of normal. In patients treated with gene aberration-related therapy, anti-angiogenic therapy led to significantly longer OS after their initial phase I trial therapy than those who did not: 26 months versus 7.4 months, respectively (P = 0.04). This study provided preliminary evidence that CCNE1 amplification was associated with frequent TP53 mutation and aggressive clinical outcomes. Survival benefit was observed in patients who received antiangiogenic therapy and gene aberration-related treatment, supporting the future development of a personalized approach to combine gene aberration-related therapy with antiangiogenesis for the treatment of advanced malignancies harboring CCNE1 amplification.
Journal Article