Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
208 result(s) for "Jansen, Rolf"
Sort by:
The James Webb Space Telescope North Ecliptic Pole Time-domain Field. I. Field Selection of a JWST Community Field for Time-domain Studies
We describe the selection of the James Webb Space Telescope (JWST) North Ecliptic Pole (NEP) Time-domain Field (TDF), a 14′ diameter field located within JWST's northern continuous viewing zone (CVZ) and centered at (R.A., decl.)J2000 = (17:22:47.896, +65:49:21.54). We demonstrate that this is the only region in the sky where JWST can observe a clean (i.e., free of bright foreground stars and with low Galactic foreground extinction) extragalactic deep survey field of this size at arbitrary cadence or at arbitrary orientation, and without a penalty in terms of a raised zodiacal background. This will crucially enable a wide range of new and exciting time-domain science, including high-redshift transient searches and monitoring (e.g., SNe), variability studies from active galactic nuclei (AGNs) to brown dwarf atmospheres, as well as proper motions of possibly extreme scattered Kuiper Belt and Inner Oort Cloud Objects, and of nearby Galactic brown dwarfs, low-mass stars, and ultracool white dwarfs. A JWST/NIRCam+NIRISS GTO program will provide an initial 0.8-5.0 m spectrophotometric characterization to m AB ∼ 28.8 0.3 mag of four orthogonal \"spokes\" within this field. The multi-wavelength (radio through X-ray) context of the field is in hand (ground-based near-UV-visible-near-IR), in progress (VLA 3 GHz, VLBA 5 GHz, HST UV-visible, Chandra X-ray, and IRAM 30 m 1.3 and 2 mm), or scheduled (JCMT 850 m). We welcome and encourage ground- and space-based follow-up of the initial GTO observations and ancillary data, to realize its potential as an ideal JWST time-domain community field.
Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria
Some bacterial clades are important sources of novel bioactive natural products. Estimating the magnitude of chemical diversity available from such a resource is complicated by issues including cultivability, isolation bias and limited analytical data sets. Here we perform a systematic metabolite survey of ~2300 bacterial strains of the order Myxococcales , a well-established source of natural products, using mass spectrometry. Our analysis encompasses both known and previously unidentified metabolites detected under laboratory cultivation conditions, thereby enabling large-scale comparison of production profiles in relation to myxobacterial taxonomy. We find a correlation between taxonomic distance and the production of distinct secondary metabolite families, further supporting the idea that the chances of discovering novel metabolites are greater by examining strains from new genera rather than additional representatives within the same genus. In addition, we report the discovery and structure elucidation of rowithocin, a myxobacterial secondary metabolite featuring an uncommon phosphorylated polyketide scaffold. It is thought that the chances for discovery of novel natural products increase by screening rare organisms. Here the authors analyse metabolites produced by over 2300 myxobacterial strains and, indeed, find a correlation between taxonomic distance and production of distinct secondary metabolite families.
Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding
A key regulated step of transcription is promoter melting by RNA polymerase (RNAP) to form the open promoter complex 1 – 3 . To generate the open complex, the conserved catalytic core of the RNAP combines with initiation factors to locate promoter DNA, unwind 12–14 base pairs of the DNA duplex and load the template-strand DNA into the RNAP active site. Formation of the open complex is a multi-step process during which transient intermediates of unknown structure are formed 4 – 6 . Here we present cryo-electron microscopy structures of bacterial RNAP–promoter DNA complexes, including structures of partially melted intermediates. The structures show that late steps of promoter melting occur within the RNAP cleft, delineate key roles for fork-loop 2 and switch 2—universal structural features of RNAP—in restricting access of DNA to the RNAP active site, and explain why clamp opening is required to allow entry of single-stranded template DNA into the active site. The key roles of fork-loop 2 and switch 2 suggest a common mechanism for late steps in promoter DNA opening to enable gene expression across all domains of life. Cryo-electron microscopy structures of bacterial RNAP–promoter DNA complexes, including structures of partially melted intermediates, suggest a universally conserved common mechanism for promoter DNA opening prior to gene expression.
Aperture Effects on Star Formation Rate, Metallicity, and Reddening
We use 101 galaxies selected from the Nearby Field Galaxy Survey to investigate the effect of aperture size on the star formation rate, metallicity, and reddening determinations for galaxies. Our sample includes galaxies of all Hubble types except ellipticals with global star formation rates (SFRs) ranging from 0.01 to 100M ⊙yr−1, metallicities in the range \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $7.9\\lesssim \\mathrm{log}\\,( \\mathrm{O}\\,/ \\mathrm{H}\\,) +12\\lesssim 9.0$ \\end{document} , and reddening of \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $0\\lesssim A( V) \\lesssim 3.3$ \\end{document} . We compare the SFR, metallicity, and reddening derived from nuclear spectra to those derived from integrated spectra. For apertures capturing <20% of the \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $B_{26}$ \\end{document} light, the differences between nuclear and global metallicity, extinction, and SFR are substantial. Late‐type spiral galaxies show the largest systematic difference (∼0.14 dex), with nuclear metallicities greater than the global metallicities. The Sdm, Im, and Peculiar types have the largest scatter in nuclear/integrated metallicities, indicating a large range in metallicity gradients for these galaxy types, or clumpy metallicity distributions. We find little evidence for systematic differences between nuclear and global extinction estimates for any galaxy type. However, there is significant scatter between the nuclear and integrated extinction estimates for nuclear apertures containing <20% of the \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $B_{26}$ \\end{document} flux. We calculate an “expected” SFR using our nuclear spectra and apply the commonly used aperture correction method. The expected SFR overestimates the global value for early‐type spirals, with large scatter for all Hubble types, particularly late types. The differences between the expected and global SFRs probably result from the assumption that the distributions of the emission‐line gas and the continuum are identical. The largest scatter (error) in the estimated SFR occurs when the aperture captures <20% of the \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $B_{26}$ \\end{document} emission. We discuss the implications of these results for metallicity‐luminosity relations and star formation history studies based on fiber spectra. To reduce systematic and random errors from aperture effects, we recommend selecting samples with fibers that capture >20% of the galaxy light. For the Sloan Digital Sky Survey and the Two‐Degree Field Galaxy Redshift Survey, redshifts \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $z> 0.04$ \\end{document} and 0.06 are required, respectively, to ensure a covering fraction >20% for galaxy sizes similar to the average size, type, and luminosity observed in our sample. Higher luminosity samples and samples containing many late‐type galaxies require a larger minimum redshift to ensure that >20% of the galaxy light is enclosed by the fiber.
A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansine site of tubulin
Microtubule-targeting agents (MTAs) like taxol and vinblastine are among the most successful chemotherapeutic drugs against cancer. Here, we describe a fluorescence anisotropy-based assay that specifically probes for ligands targeting the recently discovered maytansine site of tubulin. Using this assay, we have determined the dissociation constants of known maytansine site ligands, including the pharmacologically active degradation product of the clinical antibody-drug conjugate trastuzumab emtansine. In addition, we discovered that the two natural products spongistatin-1 and disorazole Z with established cellular potency bind to the maytansine site on β-tubulin. The high-resolution crystal structures of spongistatin-1 and disorazole Z in complex with tubulin allowed the definition of an additional sub-site adjacent to the pocket shared by all maytansine-site ligands, which could be exploitable as a distinct, separate target site for small molecules. Our study provides a basis for the discovery and development of next-generation MTAs for the treatment of cancer. Microtubule-targeting agents are used successfully as anticancer therapeutics. Here authors develop a fluorescence-anisotropy-based assay to identify and characterize ligands for the maytansine site of tubulin and provide crystal structures of identified ligands in complex with tubulin.
Corallopyronin A for short-course anti-wolbachial, macrofilaricidal treatment of filarial infections
Current efforts to eliminate the neglected tropical diseases onchocerciasis and lymphatic filariasis, caused by the filarial nematodes Onchocerca volvulus and Wuchereria bancrofti or Brugia spp., respectively, are hampered by lack of a short-course macrofilaricidal–adult-worm killing–treatment. Anti-wolbachial antibiotics, e.g. doxycycline, target the essential Wolbachia endosymbionts of filariae and are a safe prototype adult-worm-sterilizing and macrofilaricidal regimen, in contrast to standard treatments with ivermectin or diethylcarbamazine, which mainly target the microfilariae. However, treatment regimens of 4–5 weeks necessary for doxycycline and contraindications limit its use. Therefore, we tested the preclinical anti- Wolbachia drug candidate Corallopyronin A (CorA) for in vivo efficacy during initial and chronic filarial infections in the Litomosoides sigmodontis rodent model. CorA treatment for 14 days beginning immediately after infection cleared >90% of Wolbachia endosymbionts from filariae and prevented development into adult worms. CorA treatment of patently infected microfilaremic gerbils for 14 days with 30 mg/kg twice a day (BID) achieved a sustained reduction of >99% of Wolbachia endosymbionts from adult filariae and microfilariae, followed by complete inhibition of filarial embryogenesis resulting in clearance of microfilariae. Combined treatment of CorA and albendazole, a drug currently co-administered during mass drug administrations and previously shown to enhance efficacy of anti- Wolbachia drugs, achieved microfilarial clearance after 7 days of treatment at a lower BID dose of 10 mg/kg CorA, a Human Equivalent Dose of 1.4 mg/kg. Importantly, this combination led to a significant reduction in the adult worm burden, which has not yet been published with other anti- Wolbachia candidates tested in this model. In summary, CorA is a preclinical candidate for filariasis, which significantly reduces treatment times required to achieve sustained Wolbachia depletion, clearance of microfilariae, and inhibition of embryogenesis. In combination with albendazole, CorA is robustly macrofilaricidal after 7 days of treatment and fulfills the Target Product Profile for a macrofilaricidal drug.
Opening and Closing of the Bacterial RNA Polymerase Clamp
Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.
Ultra-deep Large Binocular Camera U -band Imaging of the GOODS-North Field: Depth Versus Resolution
We present a study of the trade-off between depth and resolution using a large number of U-band imaging observations in the GOODS-North field from the Large Binocular Camera (LBC) on the Large Binocular Telescope (LBT). Having acquired over 30 hr of data (315 images with 5–6 minutes exposures), we generated multiple image mosaics, starting with the best atmospheric seeing images (FWHM ≲ 0″8), which constitute ~10% of the total data set. For subsequent mosaics, we added in data with larger seeing values until the final, deepest mosaic included all images with FWHM ≲ 1″8 (~94% of the total data set). From the mosaics, we made object catalogs to compare the optimal-resolution, yet shallower image to the lower-resolution but deeper image. We show that the number counts for both images are ~90% complete to U AB ≲ 26 mag. Fainter than U AB ~ 27 mag, the object counts from the optimal-resolution image start to drop-off dramatically (90% between U AB = 27 and 28 mag), while the deepest image with better surface-brightness sensitivity (... ≲ 32 mag arcsec−2) show a more gradual drop (10% between U AB sime 27 and 28 mag). For the brightest galaxies within the GOODS-N field, structure and clumpy features within the galaxies are more prominent in the optimal-resolution image compared to the deeper mosaics. We conclude that for studies of brighter galaxies and features within them, the optimal-resolution image should be used. However, to fully explore and understand the faintest objects, the deeper imaging with lower resolution are also required. Finally, we find-for 220 brighter galaxies with U AB ≲ 23 mag-only marginal differences in total flux between the optimal-resolution and lower-resolution light-profiles to ... ≲ 32 mag arcsec−2. In only 10% of the cases are the total-flux differences larger than 0.5 mag. This helps constrain how much flux can be missed from galaxy outskirts, which is important for studies of the Extragalactic Background Light. (ProQuest: ... denotes formulae omitted.)
Six Heterocyclic Metabolites from the Myxobacterium Labilithrix luteola
Two new secondary metabolites, labindole A [2-methyl-3-(2-nitroethyl)-3H-indole] (1) and labindole B [2-methyl-3-(2-nitrovinyl)-3H-indole] (2), were isolated from the myxobacterium Labilithrix luteola (DSM 27648T). Additionally, four metabolites 3, 4, 5 and 6 already known from other sources were obtained. Their structures were elucidated from high resolution electrospray ionisation mass spectrometry (HRESIMS) and 1D and 2D nuclear magnetic resonance (NMR) spectroscopy data and their relative configuration was assigned based on nuclear Overhauser effect (NOE) and vicinal 1H-NMR coupling data. The compounds where tested for biological activities; labindoles A (1) and B (2) exhibited significant activity against Hepatitis C Virus, 9H-carbazole (3), 3-chloro-9H-carbazole (4) and 4-hydroxymethyl-quinoline (5) showed antifungal activities. Moreover, compound 3 had weak to moderate antibacterial activities, while labindoles A (1) and B (2) were devoid of significant antifungal and antibacterial effects.
Pharmacokinetics and Pharmacodynamics (PK/PD) of Corallopyronin A against Methicillin-Resistant Staphylococcus aureus
Methicillin-resistant Staphylococcus aureus (MRSA) is a World Health Organization’s high priority pathogen organism, with an estimated > 100,000 deaths worldwide in 2019. Thus, there is an unmet medical need for novel and resistance-breaking anti-infectives. The natural product Co-rallopyronin A (CorA), currently in preclinical development for filariasis, is efficacious against MRSA in vitro. In this study, we evaluated the pharmacokinetics of CorA after dosing in mice. Furthermore, we determined compound concentrations in target compartments, such as lung, kidney and thigh tissue, using LC-MS/MS. Based on the pharmacokinetic results, we evaluated the pharmacodynamic profile of CorA using the standard neutropenic thigh and lung infection models. We demonstrate that CorA is effective in both standard pharmacodynamic models. In addition to reaching effective levels in the lung and muscle, CorA was detected at high levels in the thigh bone. The data presented herein encourage the further exploration of the additional CorA indications treatment of MRSA- and methicillin-sensitive S. aureus- (MSSA) related infections.