Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,588 result(s) for "Janssen, L."
Sort by:
Treatment of HCV Infection by Targeting MicroRNA
In this phase 2 trial, an antisense oligonucleotide was tested in the treatment of chronic hepatitis C virus infection. The oligonucleotide was designed to bind to and sequester a microRNA required for HCV replication. Approximately 170 million persons worldwide are chronically infected with the hepatitis C virus (HCV). 1 Chronic HCV infection is a major cause of liver cirrhosis, liver failure, and hepatocellular carcinoma and is the leading indication for liver transplantation in many Western countries. 2 Sustained eradication of HCV infection has been associated with a reduced risk of liver-related morbidity and all-cause mortality. 3 – 5 Despite the recent registration of protease inhibitors for the treatment of chronic HCV genotype 1 infection, current therapeutic regimens remain dependent on the administration of pegylated interferon and ribavirin for 24 to 48 weeks. 6 , 7 Thus, anti-HCV therapy continues to . . .
Evaluation of Changes in Morphology and Function of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (HiPSC-CMs) Cultured on an Aligned-Nanofiber Cardiac Patch
Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates. hiPSC-CMs were cultured on; 1) a highly aligned polylactide-co-glycolide (PLGA) nanofiber scaffold (~50 microns thick) and 2) on a standard flat culture plate. Scanning electron microscopy (SEM) was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43) was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes. SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro. Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes cultured in an anisotropic environment created by an aligned nanofiber patch. In this environment, these cells better approximate normal cardiac tissue compared with cells cultured on flat surface and can serve as the basis for bioengineering of an implantable cardiac patch.
Overnutrition, Hyperinsulinemia and Ectopic Fat: It Is Time for A Paradigm Shift in the Management of Type 2 Diabetes
The worldwide incidence of prediabetes/type 2 has continued to rise the last 40 years. In the same period, the mean daily energy intake has increased, and the quality of food has significantly changed. The chronic exposure of pancreatic β-cells to calorie excess (excessive energy intake) and food additives may increase pancreatic insulin secretion, decrease insulin pulses and/or reduce hepatic insulin clearance, thereby causing chronic hyperinsulinemia and peripheral insulin resistance. Chronic calorie excess and hyperinsulinemia may promote lipogenesis, inhibit lipolysis and increase lipid storage in adipocytes. In addition, calorie excess and hyperinsulinemia can induce insulin resistance and contribute to progressive and excessive ectopic fat accumulation in the liver and pancreas by the conversion of excess calories into fat. The personal fat threshold hypothesis proposes that in susceptible individuals, excessive ectopic fat accumulation may eventually lead to hepatic insulin receptor resistance, the loss of pancreatic insulin secretion, hyperglycemia and the development of frank type 2 diabetes. Thus, type 2 diabetes seems (partly) to be caused by hyperinsulinemia-induced excess ectopic fat accumulation in the liver and pancreas. Increasing evidence further shows that interventions (hypocaloric diet and/or bariatric surgery), which remove ectopic fat in the liver and pancreas by introducing a negative energy balance, can normalize insulin secretion and glucose tolerance and induce the sustained biochemical remission of type 2 diabetes. This pathophysiological insight may have major implications and may cause a paradigm shift in the management of type 2 diabetes: avoiding/reducing ectopic fat accumulation in the liver and pancreas may both be essential to prevent and cure type 2 diabetes.
Prevention of postoperative delirium in elderly patients planned for elective surgery: systematic review and meta-analysis
Vulnerable or \"frail\" patients are susceptible to the development of delirium when exposed to triggers such as surgical procedures. Once delirium occurs, interventions have little effect on severity or duration, emphasizing the importance of primary prevention. This review provides an overview of interventions to prevent postoperative delirium in elderly patients undergoing elective surgery. A literature search was conducted in March 2018. Randomized controlled trials (RCTs) and before-and-after studies on interventions with potential effects on postoperative delirium in elderly surgical patients were included. Acute admission, planned ICU admission, and cardiac patients were excluded. Full texts were reviewed, and quality was assessed by two independent reviewers. Primary outcome was the incidence of delirium. Secondary outcomes were severity and duration of delirium. Pooled risk ratios (RRs) were calculated for incidences of delirium where similar intervention techniques were used. Thirty-one RCTs and four before-and-after studies were included for analysis. In 19 studies, intervention decreased the incidences of postoperative delirium. Severity was reduced in three out of nine studies which reported severity of delirium. Duration was reduced in three out of six studies. Pooled analysis showed a significant reduction in delirium incidence for dexmedetomidine treatment, and bispectral index (BIS)-guided anaesthesia. Based on sensitivity analyses, by leaving out studies with a high risk of bias, multicomponent interventions and antipsychotics can also significantly reduce the incidence of delirium. Multicomponent interventions, the use of antipsychotics, BIS-guidance, and dexmedetomidine treatment can successfully reduce the incidence of postoperative delirium in elderly patients undergoing elective, non-cardiac surgery. However, present studies are heterogeneous, and high-quality studies are scarce. Future studies should add these preventive methods to already existing multimodal and multidisciplinary interventions to tackle as many precipitating factors as possible, starting in the pre-admission period.
Efficacy and Safety of Bepirovirsen in Chronic Hepatitis B Infection
In a phase 2 trial, bepirovirsen, an antisense oligonucleotide that targets all hepatitis B virus mRNAs, resulted in sustained loss of hepatitis B surface antigen and HBV DNA in 9 to 10% of participants with chronic HBV infection.
The Causal Role of Ectopic Fat Deposition in the Pathogenesis of Metabolic Syndrome
Consuming a “modern” Western diet and overnutrition may increase insulin secretion. Additionally, nutrition-mediated hyperinsulinemia is a major driver of ectopic fat deposition. The global prevalence of metabolic syndrome is high and growing. Within this context, people with congenital lipodystrophy often experience a severe form of metabolic syndrome. Evidence is increasingly supporting that subtle partial lipodystrophy plays an important role in the development of metabolic syndrome in the general population. In individuals in the general population with subtle partial lipodystrophy, as well as in those with congenital lipodystrophy, the subcutaneous adipose tissues are unable to accommodate surplus energy intake. In both conditions, (excess) fat is directed toward the liver, pancreas, and muscles, where it is deposited as ectopic fat, as this fat can no longer be stored in the “safe” subcutaneous fat depots. Ectopic fat depositions cause insulin resistance in the liver and muscles, as well as β-cell dysfunction in the pancreas. Support of a direct pathological role of ectopic fat deposition in this condition is further provided by the rapid normalization of hepatic insulin sensitivity and improvement in pancreatic β-cell function after marked reductions in ectopic fat depositions. Thus, ectopic fat deposition in the liver, pancreas, and muscles may play a causal role in the pathogenesis of metabolic syndrome even in the general population. As such, the prevention of ectopic fat deposition may reduce the risk of metabolic syndrome and mitigate its effects.
PR3-ANCA: A Promising Biomarker in Primary Sclerosing Cholangitis (PSC)
The only recognized biomarker for primary sclerosing cholangitis (PSC) is atypical anti-neutrophil cytoplasmic antibodies (aANCA), which, in addition to having low sensitivity and specificity, is an indirect immunofluorescence (IIF) test lacking the advantages of high throughput and objectivity. Recent reports have shown that antibodies to proteinase-3 (PR3-ANCA) might add diagnostic value in inflammatory bowel disease (IBD), specifically in ulcerative colitis (UC). As PSC is associated with IBD, the objective of this study was to evaluate the frequency and clinical significance of PR3-ANCA in a large cohort of patients. A total of 244 PSC and 254 control [autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC), hepatitis C viral infection (HCV), hepatitis B viral infection (HBV), and healthy controls] sera and their clinical correlations were retrospectively analyzed for PR3-ANCA determined by ELISA and a new chemiluminescence immunoassay (CIA). Testing was also performed for aANCA by IIF. When measured by CIA, PR3-ANCA was detected in 38.5% (94/244) of PSC patients compared to 10.6% (27/254) controls (p<0.0001). By ELISA, PR3-ANCA was detected in 23.4% (57/244) of PSC patients compared to 2.7% (6/254) controls (p<0.0001). PR3-ANCA in PSC patients was not associated with the presence or type of underlying IBD, and, in fact, it was more frequent in Crohn's disease (CD) patients with PSC than previously reported in CD alone. PR3-ANCA in PSC measured by CIA correlated with higher liver enzymes. PR3-ANCA is detected in a significant proportion of PSC patients compared to other liver diseases including PBC and AIH. PR3-ANCA is associated with higher liver enzyme levels in PSC, and is not solely related to underlying IBD.
Hyperinsulinemia and Its Pivotal Role in Aging, Obesity, Type 2 Diabetes, Cardiovascular Disease and Cancer
For many years, the dogma has been that insulin resistance precedes the development of hyperinsulinemia. However, recent data suggest a reverse order and place hyperinsulinemia mechanistically upstream of insulin resistance. Genetic background, consumption of the “modern” Western diet and over-nutrition may increase insulin secretion, decrease insulin pulses and/or reduce hepatic insulin clearance, thereby causing hyperinsulinemia. Hyperinsulinemia disturbs the balance of the insulin–GH–IGF axis and shifts the insulin : GH ratio towards insulin and away from GH. This insulin–GH shift promotes energy storage and lipid synthesis and hinders lipid breakdown, resulting in obesity due to higher fat accumulation and lower energy expenditure. Hyperinsulinemia is an important etiological factor in the development of metabolic syndrome, type 2 diabetes, cardiovascular disease, cancer and premature mortality. It has been further hypothesized that nutritionally driven insulin exposure controls the rate of mammalian aging. Interventions that normalize/reduce plasma insulin concentrations might play a key role in the prevention and treatment of age-related decline, obesity, type 2 diabetes, cardiovascular disease and cancer. Caloric restriction, increasing hepatic insulin clearance and maximizing insulin sensitivity are at present the three main strategies available for managing hyperinsulinemia. This may slow down age-related physiological decline and prevent age-related diseases. Drugs that reduce insulin (hyper) secretion, normalize pulsatile insulin secretion and/or increase hepatic insulin clearance may also have the potential to prevent or delay the progression of hyperinsulinemia-mediated diseases. Future research should focus on new strategies to minimize hyperinsulinemia at an early stage, aiming at successfully preventing and treating hyperinsulinemia-mediated diseases.
Insulin-like Growth Factor-I Receptor and Thyroid-Associated Ophthalmopathy
Abstract Thyroid-associated ophthalmopathy (TAO) is a complex disease process presumed to emerge from autoimmunity occurring in the thyroid gland, most frequently in Graves disease (GD). It is disfiguring and potentially blinding, culminating in orbital tissue remodeling and disruption of function of structures adjacent to the eye. There are currently no medical therapies proven capable of altering the clinical outcome of TAO in randomized, placebo-controlled multicenter trials. The orbital fibroblast represents the central target for immune reactivity. Recent identification of fibroblasts that putatively originate in the bone marrow as monocyte progenitors provides a plausible explanation for why antigens, the expressions of which were once considered restricted to the thyroid, are detected in the TAO orbit. These cells, known as fibrocytes, express relatively high levels of functional TSH receptor (TSHR) through which they can be activated by TSH and the GD-specific pathogenic antibodies that underpin thyroid overactivity. Fibrocytes also express insulin-like growth factor I receptor (IGF-IR) with which TSHR forms a physical and functional signaling complex. Notably, inhibition of IGF-IR activity results in the attenuation of signaling initiated at either receptor. Some studies suggest that IGF-IR-activating antibodies are generated in GD, whereas others refute this concept. These observations served as the rationale for implementing a recently completed therapeutic trial of teprotumumab, a monoclonal inhibitory antibody targeting IGF-IR in TAO. Results of that trial in active, moderate to severe disease revealed dramatic and rapid reductions in disease activity and severity. The targeting of IGF-IR with specific biologic agents may represent a paradigm shift in the therapy of TAO.
Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array
A quantum simulation platform based on quantum dots is reported that can operate at relatively low temperatures, and its utility is shown by simulating a Fermi–Hubbard model. Quantum simulations on quantum dots Quantum simulations have been performed on various different platforms, for example using vacancies in diamond or ultracold quantum gases. Quantum dots have been regarded as a promising constituent of quantum simulation platforms for some time, but owing to difficulties in calibrating them it has so far been impossible to run a successful simulation. Here, the authors overcome these difficulties and demonstrate a quantum simulation of a Fermi–Hubbard model, which is a famous model in condensed matter physics. Quantum simulation platforms based on quantum dots are predicted to be able to reach lower temperatures than atomic-physics-based platforms. This could help to clarify puzzles in condensed matter physics, such as high-temperature superconductivity. Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter 1 , 2 , 3 . Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi–Hubbard models 4 , 5 , 6 . Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi–Hubbard Hamiltonian 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 . Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi–Hubbard physics on solid-state platforms have been made 18 , 19 . Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi–Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition 20 , which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition 1 . As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.