Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,342 result(s) for "Janssens, I. A."
Sort by:
Global patterns of phosphatase activity in natural soils
Soil phosphatase levels strongly control the biotic pathways of phosphorus (P), an essential element for life, which is often limiting in terrestrial ecosystems. We investigated the influence of climatic and soil traits on phosphatase activity in terrestrial systems using metadata analysis from published studies. This is the first analysis of global measurements of phosphatase in natural soils. Our results suggest that organic P (P org ), rather than available P, is the most important P fraction in predicting phosphatase activity. Structural equation modeling using soil total nitrogen (TN), mean annual precipitation, mean annual temperature, thermal amplitude and total soil carbon as most available predictor variables explained up to 50% of the spatial variance in phosphatase activity. In this analysis, P org could not be tested and among the rest of available variables, TN was the most important factor explaining the observed spatial gradients in phosphatase activity. On the other hand, phosphatase activity was also found to be associated with climatic conditions and soil type across different biomes worldwide. The close association among different predictors like P org , TN and precipitation suggest that P recycling is driven by a broad scale pattern of ecosystem productivity capacity.
Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests
The eddy-covariance (EC) micro-meteorological technique and the ecology-based biometric methods (BM) are the primary methodologies to quantify CO 2 exchange between terrestrial ecosystems and the atmosphere (net ecosystem production, NEP) and its two components, ecosystem respiration and gross primary production. Here we show that EC and BM provide different estimates of NEP, but comparable ecosystem respiration and gross primary production for forest ecosystems globally. Discrepancies between methods are not related to environmental or stand variables, but are consistently more pronounced for boreal forests where carbon fluxes are smaller. BM estimates are prone to underestimation of net primary production and overestimation of leaf respiration. EC biases are not apparent across sites, suggesting the effectiveness of standard post-processing procedures. Our results increase confidence in EC, show in which conditions EC and BM estimates can be integrated, and which methodological aspects can improve the convergence between EC and BM. Site-level quantification of Net Ecosystem Production (NEP) and associated components rely on eddy covariance and biometric methods. Here these techniques are compared for global forest carbon fluxes, revealing differences in NEP, but similar estimates of ecosystem respiration and gross primary production.
Chemical characterisation of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes of biogenic secondary organic aerosol
Measurements of organic marker compounds and inorganic species were performed on PM2.5 aerosols from a Belgian forest site that is severely impacted by urban pollution (\"De Inslag\", Brasschaat, Belgium) during a 2007 summer period within the framework of the \"Formation mechanisms, marker compounds, and source apportionment for biogenic atmospheric aerosols (BIOSOL)\" project. The measured organic species included (i) low-molecular weight (MW) dicarboxylic acids (LMW DCAs), (ii) methanesulfonate (MSA), (iii) terpenoic acids originating from the oxidation of α-pinene, β-pinene, d-limonene and Δ3-carene, and (iv) organosulfates related to secondary organic aerosol from the oxidation of isoprene and α-pinene. The organic tracers explained, on average, 5.3 % of the organic carbon (OC), of which 0.7 % was due to MSA, 3.4 % to LMW DCAs, 0.6 % to organosulfates, and 0.6 % to terpenoic acids. The highest atmospheric concentrations of most species were observed during the first five days of the campaign, which were characterised by maximum day-time temperatures >22 °C. Most of the terpenoic acids and the organosulfates peaked during day-time, consistent with their local photochemical origin. High concentrations of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and low concentrations of cis-pinonic acid were noted during the first five days of the campaign, indicative of an aged biogenic aerosol. Several correlations between organic species were very high (r>0.85), high (0.7
Reduction of forest soil respiration in response to nitrogen deposition
The use of fossil fuels and fertilizers has increased the amount of biologically reactive nitrogen in the atmosphere over the past century. A meta-analysis suggests that nitrogen deposition typically impedes the decomposition of carbon in forest soils, significantly reducing carbon dioxide emissions to the atmosphere. The use of fossil fuels and fertilizers has increased the amount of biologically reactive nitrogen in the atmosphere over the past century. As a consequence, forests in industrialized regions have experienced greater rates of nitrogen deposition in recent decades. This unintended fertilization has stimulated forest growth, but has also affected soil microbial activity, and thus the recycling of soil carbon and nutrients. A meta-analysis suggests that nitrogen deposition impedes organic matter decomposition, and thus stimulates carbon sequestration, in temperate forest soils where nitrogen is not limiting microbial growth. The concomitant reduction in soil carbon emissions is substantial, and equivalent in magnitude to the amount of carbon taken up by trees owing to nitrogen fertilization. As atmospheric nitrogen levels continue to rise, increased nitrogen deposition could spread to older, more weathered soils, as found in the tropics; however, soil carbon cycling in tropical forests cannot yet be assessed.
Biomass production efficiency controlled by management in temperate and boreal ecosystems
Some of the energy from photosynthesis is used in production of biomass. An analysis of plant productivity measurements reveals that site management is the main factor controlling how efficiently plants produce biomass, not fertility. Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes 1 . The fraction of photosynthetic production used for biomass production, the biomass production efficiency 2 , is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility 2 . Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.
Do successive climate extremes weaken the resistance of plant communities? An experimental study using plant assemblages
The probability that plant communities undergo successive climate extremes increases under climate change. Exposure to an extreme event might elicit acclimatory responses and thereby greater resistance to a subsequent event, but might also reduce resistance if the recovery period is too short or resilience too low. Using experimental herbaceous plant assemblages, we compared the effects of two successive extremes occurring in one growing season (either two drought extremes, two heat extremes or two drought + heat extremes) to those of assemblages being exposed only to the second extreme. Additionally, the recovery period between the successive extremes was varied (2, 3.5 or 6 weeks). Among the different types of climate extremes, combined heat + drought extremes induced substantial leaf mortality and plant senescence, while the effects of drought and heat extremes were smaller. Preceding drought + heat extremes lowered the resistance in terms of leaf survival to a subsequent drought + heat extreme if the recovery period was two weeks, even though the leaves had completely recovered during that interval. No reduced resistance to subsequent extremes was recorded with longer recovery times or with drought or heat extremes. Despite the substantial mortality on the short term, the drought + heat and the heat extremes increased the end-of-season aboveground biomass independent of the number of extreme events or the duration of the recovery period. These results show that recurrent climate extremes with short time intervals can weaken the resistance of herbaceous plant assemblages. This negative effect in the short term can, however, be compensated in the longer term through rapid recovery and secondary positive effects.
Nutrient availability as the key regulator of global forest carbon balance
A synthesis of findings from 92 forests in different climate zones reveals that nutrient availability plays a crucial role in determining forest carbon balance, primarily through its influence on respiration rates. These findings challenge the validity of assumptions used in most global coupled carbon-cycle climate models. Forests strongly affect climate through the exchange of large amounts of atmospheric CO 2 (ref.  1 ). The main drivers of spatial variability in net ecosystem production (NEP) on a global scale are, however, poorly known. As increasing nutrient availability increases the production of biomass per unit of photosynthesis 2 and reduces heterotrophic 3 respiration in forests, we expected nutrients to determine carbon sequestration in forests. Our synthesis study of 92 forests in different climate zones revealed that nutrient availability indeed plays a crucial role in determining NEP and ecosystem carbon-use efficiency (CUEe; that is, the ratio of NEP to gross primary production (GPP)). Forests with high GPP exhibited high NEP only in nutrient-rich forests (CUEe = 33 ± 4%; mean ± s.e.m.). In nutrient-poor forests, a much larger proportion of GPP was released through ecosystem respiration, resulting in lower CUEe (6 ± 4%). Our finding that nutrient availability exerts a stronger control on NEP than on carbon input (GPP) conflicts with assumptions of nearly all global coupled carbon cycle–climate models, which assume that carbon inputs through photosynthesis drive biomass production and carbon sequestration. An improved global understanding of nutrient availability would therefore greatly improve carbon cycle modelling and should become a critical focus for future research.
Fine root biomass and turnover of two fast-growing poplar genotypes in a short-rotation coppice culture
BACKGROUND AND AIMS: The quantification of root dynamics remains a major challenge in ecological research because root sampling is laborious and prone to error due to unavoidable disturbance of the delicate soil-root interface. The objective of the present study was to quantify the distribution of the biomass and turnover of roots of poplars (Populus) and associated understory vegetation during the second growing season of a high-density short rotation coppice culture. METHODS: Roots were manually picked from soil samples collected with a soil core from narrow (75 cm apart) and wide rows (150 cm apart) of the double-row planting system from two genetically contrasting poplar genotypes. Several methods of estimating root production and turnover were compared. RESULTS: Poplar fine root biomass was higher in the narrow rows than in the wide rows. In spite of genetic differences in above-ground biomass, annual fine root productivity was similar for both genotypes (ca. 44 g DM m⁻² year⁻¹). Weed root biomass was equally distributed over the ground surface, and root productivity was more than two times higher compared to poplar fine roots (ca. 109 g DM m⁻² year⁻¹). CONCLUSIONS: Early in SRC plantation development, weeds result in significant root competition to the crop tree poplars, but may confer certain ecosystem services such as carbon input to soil and retention of available soil N until the trees fully occupy the site.
An optimized fine root sampling methodology balancing accuracy and time investment
Aims Tree roots are spatially highly heterogeneous and it thus requires large numbers of samples to detect statistically significant changes in root biomass. The objectives of this study were to understand and quantify the sources of error in the assessment of fine root biomass (<2 mm) during the second year of a highdensity Populus plantation. Methods Soil cores were collected in winter (n=35) and in summer (n=20), and fine roots were picked by hand for varying lengths of time: 1, 2, 5, 20, 40, and 60 min. The root biomass data were used to identify the best combination of the time spent for root picking and the number of samples collected, that minimizes the overall uncertainty (i.e. the combination of the spatial error due to the incomplete sampling and the temporal error due to the incomplete core processing). Results On average, 25 min was enough time to pick 90 % of the fine root biomass in winter, while in summer only 10 min were needed. In winter fewer samples were needed, but more time for picking was necessary as compared to summer when root biomass was higher. Conclusions Fine root sampling can be optimized by minimizing the uncertainty of the biomass estimates and simultaneously decreasing root sampling time investment.
Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants
Understanding how flowering phenology responds to warming and cooling (i.e., symmetric or asymmetric response) is needed to predict the response of flowering phenology to future climate change that will happen with the occurrence of warm and cold years superimposed upon a long-term trend. A three-year reciprocal translocation experiment was performed along an elevation gradient from 3200 m to 3800 m in the Tibetan Plateau for six alpine plants. Transplanting to lower elevation (warming) advanced the first flowering date (FFD) and transplanting to higher elevation (cooling) had the opposite effect. The FFD of early spring flowering plants (ESF) was four times less sensitive to warming than to cooling (by −2.1 d/°C and 8.4 d/°C, respectively), while midsummer flowering plants (MSF) were about twice as sensitive to warming than to cooling (−8.0 d/°C and 4.9 d/°C, respectively). Compared with pooled warming and cooling data, warming alone significantly underpredicted 3.1 d/°C for ESF and overestimated 1.7 d/°C for MSF. These results suggest that future empirical and experimental studies should consider nonlinear temperature responses that can cause such warming-cooling asymmetries as well as differing life strategies (ESF vs. MSF) among plant species.