Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
178 result(s) for "Jarius, S."
Sort by:
‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as ‘Medusa head antibodies’ due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook.
MOG encephalomyelitis after vaccination against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2): case report and comprehensive review of the literature
BackgroundIn around 20% of cases, myelin oligodendrocyte glycoprotein (MOG) immunoglobulin (IgG)-associated encephalomyelitis (MOG-EM; also termed MOG antibody-associated disease, MOGAD) first occurs in a postinfectious or postvaccinal setting.ObjectiveTo report a case of MOG-EM with onset after vaccination with the Pfizer BioNTech COVID-19 mRNA vaccine BNT162b2 (Comirnaty®) and to provide a comprehensive review of the epidemiological, clinical, radiological, electrophysiological and laboratory features as well as treatment outcomes of all published patients with SARS-CoV-2 vaccination-associated new-onset MOG-EM.MethodsCase report and review of the literature.ResultsIn our patient, MOG-IgG-positive (serum 1:1000, mainly IgG1 and IgG2; CSF 1:2; MOG-specific antibody index < 4) unilateral optic neuritis (ON) occurred 10 days after booster vaccination with BNT162b2, which had been preceded by two immunizations with the vector-based Oxford AstraZeneca vaccine ChAdOx1-S/ChAdOx1-nCoV-19 (AZD1222). High-dose steroid treatment with oral tapering resulted in complete recovery. Overall, 20 cases of SARS-CoV2 vaccination-associated MOG-EM were analysed (median age at onset 43.5 years, range 28–68; female to male ratio = 1:1.2). All cases occurred in adults and almost all after immunization with ChAdOx1-S/ChAdOx1 nCoV-19 (median interval 13 days, range 7–32), mostly after the first dose. In 70% of patients, more than one CNS region (spinal cord, brainstem, supratentorial brain, optic nerve) was affected at onset, in contrast to a much lower rate in conventional MOG-EM in adults, in which isolated ON is predominant at onset and ADEM-like phenotypes are rare. The cerebrospinal fluid white cell count (WCC) exceeded 100 cells/μl in 5/14 (36%) patients with available data (median peak WCC 58 cells/μl in those with pleocytosis; range 6–720). Severe disease with tetraparesis, paraplegia, functional blindness, brainstem involvement and/or bladder/bowel dysfunction and a high lesion load was common, and treatment escalation with plasma exchange (N = 9) and/or prolonged IVMP therapy was required in 50% of cases. Complete or partial recovery was achieved in the majority of patients, but residual symptoms were significant in some. MOG-IgG remained detectable in 7/7 cases after 3 or 6 months.ConclusionsMOG-EM with postvaccinal onset was mostly observed after vaccination with ChAdOx1-S/ChAdOx1 nCoV-19. Attack severity was often high at onset. Escalation of immunotherapy was frequently required. MOG-IgG persisted in the long term.
‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 1: Anti-mGluR1, anti-Homer-3, anti-Sj/ITPR1 and anti-CARP VIII
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as ‘Medusa-head antibodies’ due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook.
The history of neuromyelitis optica. Part 2: ‘Spinal amaurosis’, or how it all began
Neuromyelitis optica (NMO) was long considered a clinical variant of multiple sclerosis (MS). However, the discovery of a novel and pathogenic anti-astrocytic serum autoantibody targeting aquaporin-4 (termed NMO-IgG or AQP4-Ab), the most abundant water channel protein in the central nervous system, led to the recognition of NMO as a distinct disease entity in its own right and generated strong and persisting interest in the condition. NMO is now studied as a prototypic autoimmune disorder, which differs from MS in terms of immunopathogenesis, clinicoradiological presentation, optimum treatment, and prognosis. While the history of classic MS has been extensively studied, relatively little is known about the history of NMO. In Part 1 of this series we focused on the late 19th century, when the term ‘neuromyelitis optica’ was first coined, traced the term’s origins and followed its meandering evolution throughout the 20th and into the 21st century. Here, in Part 2, we demonstrate that the peculiar concurrence of acute optic nerve and spinal cord affliction characteristic for NMO caught the attention of physicians much earlier than previously thought by re-presenting a number of very early cases of possible NMO that date back to the late 18th and early 19th century. In addition, we comprehensively discuss the pioneering concept of ‘spinal amaurosis’, which was introduced into the medical literature by ophthalmologists in the first half of the 19th century.
‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 2: Anti-PKC-gamma, anti-GluR-delta2, anti-Ca/ARHGAP26 and anti-VGCC
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as ‘Medusa head antibodies’ due their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects, and provides a summary and outlook.
MOG encephalomyelitis: international recommendations on diagnosis and antibody testing
Over the past few years, new-generation cell-based assays have demonstrated a robust association of autoantibodies to full-length human myelin oligodendrocyte glycoprotein (MOG-IgG) with (mostly recurrent) optic neuritis, myelitis and brainstem encephalitis, as well as with acute disseminated encephalomyelitis (ADEM)-like presentations. Most experts now consider MOG-IgG-associated encephalomyelitis (MOG-EM) a disease entity in its own right, immunopathogenetically distinct from both classic multiple sclerosis (MS) and aquaporin-4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorders (NMOSD). Owing to a substantial overlap in clinicoradiological presentation, MOG-EM was often unwittingly misdiagnosed as MS in the past. Accordingly, increasing numbers of patients with suspected or established MS are currently being tested for MOG-IgG. However, screening of large unselected cohorts for rare biomarkers can significantly reduce the positive predictive value of a test. To lessen the hazard of overdiagnosing MOG-EM, which may lead to inappropriate treatment, more selective criteria for MOG-IgG testing are urgently needed. In this paper, we propose indications for MOG-IgG testing based on expert consensus. In addition, we give a list of conditions atypical for MOG-EM (“red flags”) that should prompt physicians to challenge a positive MOG-IgG test result. Finally, we provide recommendations regarding assay methodology, specimen sampling and data interpretation.
The MRZ reaction as a highly specific marker of multiple sclerosis: re-evaluation and structured review of the literature
Background It has long been known that the majority of patients with multiple sclerosis (MS) display an intrathecal, polyspecific humoral immune response to a broad panel of neurotropic viruses. This response has measles virus, rubella virus and varicella zoster virus as its most frequent constituents and is thus referred to as the MRZ reaction (MRZR). Objective Re-evaluation of the specificity of MRZR as a marker of MS. Methods Structured review of the existing English-, German- and Spanish-language literature on MRZR testing, with evaluation of MRZR in a cohort of 43 unselected patients with MS and other neurological diseases as a proof of principle. Results A positive MRZ reaction, defined as a positive intrathecal response to at least two of the three viral agents, was found in 78% of MS patients but only in 3% of the controls ( p  < 0.00001), corresponding to specificity of 97%. Median antibody index values were significantly lower in non-MS patients (measles, p  < 0.0001; rubella, p  < 0.006; varicella zoster, p  < 0.02). The 30 identified original studies on MRZR reported results from 1478 individual MRZR tests. A positive MRZR was reported for 458/724 (63.3%) tests in patients with MS but only for 19/754 (2.5%) tests in control patients ( p  < 0.000001), corresponding to cumulative specificity of 97.5% (CI 95% 96–98.4), cumulative sensitivity of 63.3% (CI 95% 59.6–66.8) (or 67.4% [CI 95% 63.5–71.1] in the adult MS subgroup), a positive likelihood ratio of 25.1 (CI 95% 16–39.3) and a negative likelihood ratio of 0.38 (CI 95% 0.34–0.41). Of particular note, MRZR was absent in 52/53 (98.1%) patients with neuromyelitis optica or MOG-IgG-positive encephalomyelitis, two important differential diagnoses of MS. Conclusion MRZR is the most specific laboratory marker of MS reported to date. If present, MRZR substantially increases the likelihood of the diagnosis of MS. Prospective and systematic studies on the diagnostic and prognostic impact of MRZR testing are highly warranted.
Brainstem manifestations in neuromyelitis optica: a multicenter study of 258 patients
Background: Neuromyelitis optica (NMO) is a severe autoimmune disease of the central nervous system characterized by spinal cord and optic nerve involvement. Brainstem manifestations have recently been described. Objective: To evaluate the time of occurrence, the frequency and the characteristics of brainstem symptoms in a cohort of patients with NMO according to the ethnic background and the serologic status for anti-aquaporin-4 antibodies (AQP4-abs). Methods: We performed a multicenter study of 258 patients with NMO according to the 2006 Wingerchuk criteria and we evaluated prospectively the frequency, the date of onset and the duration of various brainstem signs in this population. Results: Brainstem signs were observed in 81 patients (31.4%). The most frequently observed signs were vomiting (33.1%), hiccups (22.3%), oculomotor dysfunction (19.8%), pruritus (12.4%), followed by hearing loss (2.5%), facial palsy (2.5%), vertigo or vestibular ataxia (1.7%), trigeminal neuralgia (2.5%) and other cranial nerve signs (3.3%). They were inaugural in 44 patients (54.3%). The prevalence was higher in the non-Caucasian population (36.6%) than in the Caucasian population (26%) (p<0.05) and was higher in AQP4-ab-seropositive patients (32.7%) than in seronegative patients (26%) (not significant). Conclusions: This study confirms the high frequency of brainstem symptoms in NMO with a majority of vomiting and hiccups. The prevalence of these manifestations was higher in the non Caucasian population.
Newly emerging type B insulin resistance (TBIR) during treatment with eculizumab for AQP4-IgG-positive neuromyelitis optica spectrum disorder (NMOSD): fatal outcome
Background Aquaporin-4 immunoglobulin G (AQP4-IgG) antibody-positive neuromyelitis optica spectrum disorders (NMOSD) are frequently associated with other autoimmune disorders, including systemic lupus erythematosus (SLE). Eculizumab (ECU) is a highly effective long-term treatment for NMOSD. However, ECU is known to increase significantly the risk of infection with encapsulated bacteria and sepsis. Recently, increased insulin resistance (IR) in patients with NMOSD has been suggested. Type B IR (TBIR) is a rare autoimmune condition often accompanying or preceding SLE. TBIR has not yet been reported in NMOSD. Objective: To report an ECU-treated patient with AQP4-IgG-positive NMOSD who developed fatal septic complications after the emergence of TBIR. Methods: Description of the clinical course over a period of 8 years. Results: A female patient was diagnosed with NMOSD at the age of 16 years. A variety of disease-modifying drugs failed to achieve sufficient disease control, resulting in severe tetraparesis. Treatment with ECU was started 6 years after NMOSD diagnosis and stabilized the disease. The patient developed TBIR 8 months after initiation of ECU therapy. Following high-dose intravenous methylprednisolone therapy for a clinical relapse and three further courses of ECU, the patient was admitted with severe pneumonia caused by the encapsulated bacterium Klebsiella pneumoniae and hypoglycemia. Despite multimodal therapy, the patient died from sepsis-related multiorgan failure 18 months after initiation of ECU. Conclusions: TBIR should be considered as differential diagnosis in patients with NMOSD presenting with disturbed glucose metabolism, irrespective of the presence of SLE. More real-world data are needed on the risk/benefit ratio of ECU treatment in patients who have co-existing autoimmune comorbidities that may compromise immune function. Strategies to mitigate the risk of serious infection in patients treated with ECU are discussed.
Cerebrospinal fluid biomarkers for predicting development of multiple sclerosis in acute optic neuritis: a population-based prospective cohort study
Background Long-term outcome in multiple sclerosis (MS) depends on early treatment. In patients with acute optic neuritis (ON), an early inflammatory event, we investigated markers in cerebrospinal fluid (CSF), which may predict a diagnosis of MS. Methods Forty patients with acute ON were recruited in a prospective population-based cohort with median 29 months (range 19–41) of follow-up. Paired CSF and serum samples were taken within 14 days (range 2–38), prior to treatment. Prospectively, 16/40 patients were by a uniform algorithm diagnosed with MS (MS-ON) and 24 patients continued to manifest isolated ON (ION) during follow-up. Levels of cytokines and neurofilament light chain (NF-L) were measured at the onset of acute ON and compared to healthy controls (HC). Significance levels were corrected for multiple comparisons (“q”). The predictive value of biomarkers was determined with multivariable prediction models using nomograms. Results CSF TNF-α, IL-10, and CXCL13 levels were increased in MS-ON compared to those in ION patients ( q  = 0.021, 0.004, and 0.0006, respectively). MS-ON patients had increased CSF pleocytosis, IgG indices, and oligoclonal bands (OCBs) compared to ION ( q =  0.0007, q =  0.0058, and q =  0.0021, respectively). CSF levels of IL-10, TNF-a, IL-17A, and CXCL13 in MS-ON patients correlated with leukocyte counts ( r  > 0.69 and p  < 0.002) and IgG index ( r  > 0.55, p  < 0.037). CSF NF-L levels were increased in ON patients compared to those in HC ( q =  0.0077). In MS-ON, a progressive increase in NF-L levels was observed at 7 to 14 days after disease onset ( r  = 0.73, p  < 0.0065). Receiver-operating characteristic (ROC) curves for two multivariable prediction models were generated, with IL-10, CXCL13, and NF-L in one (“candidate”) and IgG index, OCB, and leukocytes in another (“routine”). Area under the curve was 0.89 [95% CI 0.77–1] and 0.86 [0.74–0.98], respectively. Predictions of the risk of MS diagnosis were illustrated by two nomograms. Conclusions CSF TNF-α, IL-10, CXCL13, and NF-L levels were associated with the development of MS, suggesting that the inflammatory and neurodegenerative processes occurred early. Based on subsequent diagnosis, we observed a high predictive value of routine and candidate biomarkers in CSF for the development of MS in acute ON. The nomogram predictions may be useful in the diagnostic work-up of MS.