Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
71 result(s) for "Jarvis, Debbie"
Sort by:
Cleaning products and respiratory health outcomes in occupational cleaners: a systematic review and meta-analysis
There is consistent evidence of increased respiratory symptoms in occupational cleaners; however, uncertainty remains on type of respiratory health effects, underlying causal agents, mechanisms and respiratory phenotypes. We aimed to conduct a systematic review and if possible, a meta-analysis of the available literature to characterise and quantify the cleaning-related respiratory health effects. We searched MEDLINE and EMBASE databases and included studies that evaluated the association of any respiratory health outcome with exposure to cleaning occupation or products in occupational cleaners. A modified GRADE was used to appraise the quality of included studies. We retrieved 1124 articles, and after applying our inclusion criteria, 39 were selected for the systematic review. We performed a meta-analysis of the 21 studies evaluating asthma which showed a 50% increased pooled relative risk in cleaners (meta-relative risk (RR)=1.50; 95% CI 1.44 to 1.56). Population-based cross-sectional studies showed more stable associations with asthma risk. No evidence of atopic asthma as dominant phenotype emerged. Also, we estimated a 43% increased risk (meta-RR=1.43; 95% CI 1.31 to 1.56) of chronic obstructive pulmonary disease. Evidence for associations with bronchial-hyper-responsiveness, lung function decline, rhinitis, upper and lower respiratory tract symptoms was weaker. In our systematic review and meta-analysis, we found that working as a cleaner is associated with an increased risk of reversible and even irreversible obstructive airway diseases. All studies lacked quantitative exposure assessment to cleaning products; this would help elucidate underlying causal agents and mechanisms. Exposure control and respiratory surveillance among cleaners is warranted to prevent the associated respiratory health burden. Trial registration number: CRD4201705915.
Genetic correlation and causal relationships between cardio-metabolic traits and lung function impairment
Background Associations of low lung function with features of poor cardio-metabolic health have been reported. It is, however, unclear whether these co-morbidities reflect causal associations, shared genetic heritability or are confounded by environmental factors. Methods We performed three analyses: (1) cardio-metabolic health to lung function association tests in Northern Finland Birth cohort 1966, (2) cross-trait linkage disequilibrium score regression (LDSC) to compare genetic backgrounds and (3) Mendelian randomisation (MR) analysis to assess the causal effect of cardio-metabolic traits and disease on lung function, and vice versa (bidirectional MR). Genetic associations were obtained from the UK Biobank data or published large-scale genome-wide association studies ( N > 82,000). Results We observed a negative genetic correlation between lung function and cardio-metabolic traits and diseases. In Mendelian Randomisation analysis (MR), we found associations between type 2 diabetes (T2D) instruments and forced vital capacity (FVC) as well as FEV1/FVC. Body mass index (BMI) instruments were associated to all lung function traits and C-reactive protein (CRP) instruments to FVC. These genetic associations provide evidence for a causal effect of cardio-metabolic traits on lung function. Multivariable MR suggested independence of these causal effects from other tested cardio-metabolic traits and diseases. Analysis of lung function specific SNPs revealed a potential causal effect of FEV1/FVC on blood pressure. Conclusions The present study overcomes many limitations of observational studies by using Mendelian Randomisation. We provide evidence for an independent causal effect of T2D, CRP and BMI on lung function with some of the T2D effect on lung function being attributed to inflammatory mechanisms. Furthermore, this analysis suggests a potential causal effect of FEV1/FVC on blood pressure. Our detailed analysis of the interplay between cardio-metabolic traits and impaired lung function provides the opportunity to improve the quality of existing intervention strategies.
Childhood Lung Function Predicts Adult Chronic Obstructive Pulmonary Disease and Asthma–Chronic Obstructive Pulmonary Disease Overlap Syndrome
The burden of chronic obstructive pulmonary disease (COPD) is increasing, yet there are limited data on early life risk factors. To investigate the role of childhood lung function in adult COPD phenotypes. Prebronchodilator spirometry was performed for a cohort of 7-year-old Tasmanian children (n = 8,583) in 1968 who were resurveyed at 45 years, and a selected subsample (n = 1,389) underwent prebronchodilator and post-bronchodilator spirometry. For this analysis, COPD was spirometrically defined as a post-bronchodilator FEV /FVC less than the lower limit of normal. Asthma-COPD overlap syndrome (ACOS) was defined as the coexistence of both COPD and current asthma. Associations between childhood lung function and asthma/COPD/ACOS were examined using multinomial regression. At 45 years, 959 participants had neither current asthma nor COPD (unaffected), 269 had current asthma alone, 59 had COPD alone, and 68 had ACOS. The reweighted prevalence of asthma alone was 13.5%, COPD alone 4.1%, and ACOS 2.9%. The lowest quartile of FEV at 7 years was associated with ACOS (odds ratio, 2.93; 95% confidence interval, 1.32-6.52), but not COPD or asthma alone. The lowest quartile of FEV /FVC ratio at 7 years was associated with ACOS (odds ratio, 16.3; 95% confidence interval, 4.7-55.9) and COPD (odds ratio, 5.76; 95% confidence interval, 1.9-17.4), but not asthma alone. Being in the lowest quartile for lung function at age 7 may have long-term consequences for the development of COPD and ACOS by middle age. Screening of lung function in school age children may identify a high-risk group that could be targeted for intervention. Further research is needed to understand possible modifiers of these associations and develop interventions for children with impaired lung function.
Long-term effect of asthma on the development of obesity among adults: an international cohort study, ECRHS
IntroductionObesity is a known risk factor for asthma. Although some evidence showed asthma causing obesity in children, the link between asthma and obesity has not been investigated in adults.MethodsWe used data from the European Community Respiratory Health Survey (ECRHS), a cohort study in 11 European countries and Australia in 3 waves between 1990 and 2014, at intervals of approximately 10 years. We considered two study periods: from ECRHS I (t) to ECRHS II (t+1), and from ECRHS II (t) to ECRHS III (t+1). We excluded obese (body mass index≥30 kg/m2) individuals at visit t. The relative risk (RR) of obesity at t+1 associated with asthma at t was estimated by multivariable modified Poisson regression (lag) with repeated measurements. Additionally, we examined the association of atopy and asthma medication on the development of obesity.ResultsWe included 7576 participants in the period ECRHS I-II (51.5% female, mean (SD) age of 34 (7) years) and 4976 in ECRHS II-III (51.3% female, 42 (8) years). 9% of participants became obese in ECRHS I-II and 15% in ECRHS II—III. The risk of developing obesity was higher among asthmatics than non-asthmatics (RR 1.22, 95% CI 1.07 to 1.38), and particularly higher among non-atopic than atopic (1.47; 1.17 to 1.86 vs 1.04; 0.86 to 1.27), those with longer disease duration (1.32; 1.10 to 1.59 in >20 years vs 1.12; 0.87 to 1.43 in ≤20 years) and those on oral corticosteroids (1.99; 1.26 to 3.15 vs 1.15; 1.03 to 1.28). Physical activity was not a mediator of this association.ConclusionThis is the first study showing that adult asthmatics have a higher risk of developing obesity than non-asthmatics, particularly those non-atopic, of longer disease duration or on oral corticosteroids.
Age at puberty and risk of asthma: A Mendelian randomisation study
Observational studies on pubertal timing and asthma, mainly performed in females, have provided conflicting results about a possible association of early puberty with higher risk of adult asthma, possibly due to residual confounding. To overcome issues of confounding, we used Mendelian randomisation (MR), i.e., genetic variants were used as instrumental variables to estimate causal effects of early puberty on post-pubertal asthma in both females and males. MR analyses were performed in UK Biobank on 243,316 women using 254 genetic variants for age at menarche, and on 192,067 men using 46 variants for age at voice breaking. Age at menarche, recorded in years, was categorised as early (<12), normal (12-14), or late (>14); age at voice breaking was recorded and analysed as early (younger than average), normal (about average age), or late (older than average). In females, we found evidence for a causal effect of pubertal timing on asthma, with an 8% increase in asthma risk for early menarche (odds ratio [OR] 1.08; 95% CI 1.04 to 1.12; p = 8.7 × 10(-5)) and an 8% decrease for late menarche (OR 0.92; 95% CI 0.89 to 0.97; p = 3.4 × 10(-4)), suggesting a continuous protective effect of increasing age at puberty. In males, we found very similar estimates of causal effects, although with wider confidence intervals (early voice breaking: OR 1.07; 95% CI 1.00 to 1.16; p = 0.06; late voice breaking: OR 0.93; 95% CI 0.87 to 0.99; p = 0.03). We detected only modest pleiotropy, and our findings showed robustness when different methods to account for pleiotropy were applied. BMI may either introduce pleiotropy or lie on the causal pathway; secondary analyses excluding variants associated with BMI yielded similar results to those of the main analyses. Our study relies on self-reported exposures and outcomes, which may have particularly affected the power of the analyses on age at voice breaking. This large MR study provides evidence for a causal detrimental effect of early puberty on asthma, and does not support previous observational findings of a U-shaped relationship between pubertal timing and asthma. Common biological or psychological mechanisms associated with early puberty might explain the similarity of our results in females and males, but further research is needed to investigate this. Taken together with evidence for other detrimental effects of early puberty on health, our study emphasises the need to further investigate and address the causes of the secular shift towards earlier puberty observed worldwide.
Smoking, telomere length and lung function decline: a longitudinal population-based study
Telomere shortening is associated with COPD and impaired lung function in cross-sectional studies, but there is no longitudinal study. We used data from 448 participants recruited as part of the French follow-up of the European Community Respiratory Health Survey. We found no relationship between telomere length at baseline and FEV1 decline after 11 years of follow-up. However, heavy smoking was associated with an accelerated FEV1 decline in individuals with short telomeres, but not in subjects with longer telomeres (p for interaction p=0.08). Our findings suggest that short telomere length in peripheral leucocytes might be a marker for increased susceptibility to the effect of smoking.
Association between physical activity over a 10-year period and current insomnia symptoms, sleep duration and daytime sleepiness: a European population-based study
ObjectivesTo explore the relationship between physical activity over a 10-year period and current symptoms of insomnia, daytime sleepiness and estimated sleep duration in adults aged 39–67.DesignPopulation-based, multicentre cohort study.Setting21 centres in nine European countries.MethodsIncluded were 4339 participants in the third follow-up to the European Community Respiratory Health Survey (ECRHS III), who answered questions on physical activity at baseline (ECRHS II) and questions on physical activity, insomnia symptoms, sleep duration and daytime sleepiness at 10-year follow-up (ECRHS III). Participants who reported that they exercised with a frequency of at least two or more times a week, for 1 hour/week or more, were classified as being physically active. Changes in activity status were categorised into four groups: persistently non-active; became inactive; became active; and persistently active.Main outcome measuresInsomnia, sleep time and daytime sleepiness in relation to physical activity.ResultsAltogether, 37% of participants were persistently non-active, 25% were persistently active, 20% became inactive and 18% became active from baseline to follow-up. Participants who were persistently active were less likely to report difficulties initiating sleep (OR 0.60, 95% CI 0.45–0.78), a short sleep duration of ≤6 hours/night (OR 0.71, 95% CI 0.59–0.85) and a long sleep of ≥9 hours/night (OR 0.53, 95% CI 0.33–0.84) than persistently non-active subjects after adjusting for age, sex, body mass index, smoking history and study centre. Daytime sleepiness and difficulties maintaining sleep were not related to physical activity status.ConclusionPhysically active people have a lower risk of some insomnia symptoms and extreme sleep durations, both long and short.
Inhaled corticosteroids and FEV1 decline in chronic obstructive pulmonary disease: a systematic review
Rate of FEV 1 decline in COPD is heterogeneous and the extent to which inhaled corticosteroids (ICS) influence the rate of decline is unclear. The majority of previous reviews have investigated specific ICS and non-ICS inhalers and have consisted of randomised control trials (RCTs), which have specific inclusion and exclusion criteria and short follow up times. We aimed to investigate the association between change in FEV 1 and ICS-containing medications in COPD patients over longer follow up times. MEDLINE and EMBASE were searched and literature comparing change in FEV 1 in COPD patients taking ICS-containing medications with patients taking non-ICS-containing medications were identified. Titles, abstract, and full texts were screened and information extracted using the PICO checklist. Risk of bias was assessed using the Cochrane Risk of Bias tool and a descriptive synthesis of the literature was carried out due to high heterogeneity of included studies. Seventeen studies met our inclusion criteria. We found that the difference in change in FEV 1 in people using ICS and non-ICS containing medications depended on the study follow-up time. Shorter follow-up studies (1 year or less) were more likely to report an increase in FEV 1 from baseline in both patients on ICS and in patients on non-ICS-containing medications, with the majority of these studies showing a greater increase in FEV 1 in patients on ICS-containing medications. Longer follow-up studies (greater than 1 year) were more likely to report a decline in FEV 1 from baseline in patients on ICS and in patients on non-ICS containing medications but rates of FEV 1 decline were similar. Further studies are needed to better understand changes in FEV 1 when ICS-containing medications are prescribed and to determine whether ICS-containing medications influence rate of decline in FEV 1 in the long term. Results from inclusive trials and observational patient cohorts may provide information more generalisable to a population of COPD patients.
Childhood Respiratory Risk Factor Profiles and Middle-Age Lung Function: A Prospective Cohort Study from the First to Sixth Decade
Childhood risk factors for long-term lung health often coexist and their specific patterns may affect subsequent lung function differently. To identify childhood risk factor profiles and their influence on lung function and chronic obstructive pulmonary disease (COPD) in middle age, and potential pathways. Profiles of 11 childhood respiratory risk factors, documented at age 7, were identified in 8,352 participants from the Tasmanian Longitudinal Health Study using latent class analysis. We investigated associations between risk profiles and post-bronchodilator lung function and COPD at age 53, mediation by childhood lung function and adult asthma, and interaction with personal smoking. Six risk profiles were identified: 1) unexposed or least exposed (49%); 2) parental smoking (21.5%); 3) allergy (10%); 4) frequent asthma, bronchitis (8.7%); 5) infrequent asthma, bronchitis (8.3%); and 6) frequent asthma, bronchitis, allergy (2.6%). Profile 6 was most strongly associated with lower forced expiratory volume in 1 second (FEV ) (-261; 95% confidence interval, -373 to -148 ml); lower FEV /forced vital capacity (FVC) (-3.4; -4.8 to -1.9%) and increased COPD risk (odds ratio, 4.9; 2.1 to 11.0) at age 53. The effect of profile 6 on COPD was largely mediated by adult active asthma (62.5%) and reduced childhood lung function (26.5%). Profiles 2 and 4 had smaller adverse effects than profile 6. Notably, the effects of profiles 2 and 6 were synergistically stronger for smokers. Profiles of childhood respiratory risk factors predict middle-age lung function levels and COPD risk. Specifically, children with frequent asthma attacks and allergies, especially if they also become adult smokers, are the most vulnerable group. Targeting active asthma in adulthood (i.e., a dominant mediator) and smoking (i.e., an effect modifier) may block causal pathways and lessen the effect of such established early-life exposures.
Complex interplay between greenness and air pollution in respiratory health
Epidemiological studies are providing increasing evidence that the presence and amount of vegetation around locations where one spends a lot of time (home, work and school) have numerous beneficial effects on physical and mental health, including increased longevity.1 Interestingly, the evidence supporting a positive role of vegetation on allergic and respiratory health is much weaker, possibly because of the complex role played by air pollution. Other vegetation metrics include other indices (eg, Soil-Adjusted Vegetation Index, ‘naturalness’ index), the presence of and distance to structured green spaces (eg, urban parks, agricultural land, forests), per cent tree cover and the quantity and species of allergenic trees. In a paper published after the submission of Zhou et al,4 participants of the English ALSPAC birth cohort with higher greenness levels close to their home and nearby urban green spaces (ie, public green areas used predominantly for recreation) throughout their life had higher FEV1 and FVC up to 24 years of age.5 Associations between repeated measures of the presence and proportion or urban green space were greater among those living in cities and in areas of high PM10 levels.