Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
45
result(s) for
"Jasinska, Anna J."
Sort by:
CCR5 as a Coreceptor for Human Immunodeficiency Virus and Simian Immunodeficiency Viruses: A Prototypic Love-Hate Affair
by
Pandrea, Ivona
,
Jasinska, Anna J.
,
Apetrei, Cristian
in
Adaptation
,
Autoimmune diseases
,
CC chemokine receptors
2022
CCR5, a chemokine receptor central for orchestrating lymphocyte/cell migration to the sites of inflammation and to the immunosurveillance, is involved in the pathogenesis of a wide spectrum of health conditions, including inflammatory diseases, viral infections, cancers and autoimmune diseases. CCR5 is also the primary coreceptor for the human immunodeficiency viruses (HIVs), supporting its entry into CD4 + T lymphocytes upon transmission and in the early stages of infection in humans. A natural loss-of-function mutation CCR5-Δ32, preventing the mutated protein expression on the cell surface, renders homozygous carriers of the null allele resistant to HIV-1 infection. This phenomenon was leveraged in the development of therapies and cure strategies for AIDS. Meanwhile, over 40 African nonhuman primate species are long-term hosts of simian immunodeficiency virus (SIV), an ancestral family of viruses that give rise to the pandemic CCR5 (R5)-tropic HIV-1. Many natural hosts typically do not progress to immunodeficiency upon the SIV infection. They have developed various strategies to minimize the SIV-related pathogenesis and disease progression, including an array of mechanisms employing modulation of the CCR5 receptor activity: (i) deletion mutations abrogating the CCR5 surface expression and conferring resistance to infection in null homozygotes; (ii) downregulation of CCR5 expression on CD4 + T cells, particularly memory cells and cells at the mucosal sites, preventing SIV from infecting and killing cells important for the maintenance of immune homeostasis, (iii) delayed onset of CCR5 expression on the CD4 + T cells during ontogenetic development that protects the offspring from vertical transmission of the virus. These host adaptations, aimed at lowering the availability of target CCR5 + CD4 + T cells through CCR5 downregulation, were countered by SIV, which evolved to alter the entry coreceptor usage toward infecting different CD4 + T-cell subpopulations that support viral replication yet without disruption of host immune homeostasis. These natural strategies against SIV/HIV-1 infection, involving control of CCR5 function, inspired therapeutic approaches against HIV-1 disease, employing CCR5 coreceptor blocking as well as gene editing and silencing of CCR5. Given the pleiotropic role of CCR5 in health beyond immune disease, the precision as well as costs and benefits of such interventions needs to be carefully considered.
Journal Article
Walk on the wild side: SIV infection in African non-human primate hosts—from the field to the laboratory
by
Pandrea, Ivona
,
Jasinska, Anna J.
,
Apetrei, Cristian
in
Acquired immune deficiency syndrome
,
African green monkey (AGM) (Chlorocebus aethiops)
,
AIDS
2023
HIV emerged following cross-species transmissions of simian immunodeficiency viruses (SIVs) that naturally infect non-human primates (NHPs) from Africa. While HIV replication and CD4 + T-cell depletion lead to increased gut permeability, microbial translocation, chronic immune activation, and systemic inflammation, the natural hosts of SIVs generally avoid these deleterious consequences when infected with their species-specific SIVs and do not progress to AIDS despite persistent lifelong high viremia due to long-term coevolution with their SIV pathogens. The benign course of natural SIV infection in the natural hosts is in stark contrast to the experimental SIV infection of Asian macaques, which progresses to simian AIDS. The mechanisms of non-pathogenic SIV infections are studied mainly in African green monkeys, sooty mangabeys, and mandrills, while progressing SIV infection is experimentally modeled in macaques: rhesus macaques, pigtailed macaques, and cynomolgus macaques. Here, we focus on the distinctive features of SIV infection in natural hosts, particularly (1): the superior healing properties of the intestinal mucosa, which enable them to maintain the integrity of the gut barrier and prevent microbial translocation, thus avoiding excessive/pathologic immune activation and inflammation usually perpetrated by the leaking of the microbial products into the circulation; (2) the gut microbiome, the disruption of which is an important factor in some inflammatory diseases, yet not completely understood in the course of lentiviral infection; (3) cell population shifts resulting in target cell restriction (downregulation of CD4 or CCR5 surface molecules that bind to SIV), control of viral replication in the lymph nodes (expansion of natural killer cells), and anti-inflammatory effects in the gut (NKG2a/c + CD8 + T cells); and (4) the genes and biological pathways that can shape genetic adaptations to viral pathogens and are associated with the non-pathogenic outcome of the natural SIV infection. Deciphering the protective mechanisms against SIV disease progression to immunodeficiency, which have been established through long-term coevolution between the natural hosts and their species-specific SIVs, may prompt the development of novel therapeutic interventions, such as drugs that can control gut inflammation, enhance gut healing capacities, or modulate the gut microbiome. These developments can go beyond HIV infection and open up large avenues for correcting gut damage, which is common in many diseases.
Journal Article
Ancient hybridization and strong adaptation to viruses across African vervet monkey populations
by
Wilson, Richard K
,
Schmitt, Christopher A
,
Jasinska, Anna J
in
45/23
,
631/208/457
,
631/250/255/1901
2017
Analysis of whole-genome sequencing data from 163 vervet monkeys from Africa and the Caribbean shows high diversity among taxa and identifies signatures of selection. Selection signals affect viral processes, and genes that show response to SIV in vervets but not macaques have elevated selection scores.
Vervet monkeys are among the most widely distributed nonhuman primates, show considerable phenotypic diversity, and have long been an important biomedical model for a variety of human diseases and in vaccine research. Using whole-genome sequencing data from 163 vervets sampled from across Africa and the Caribbean, we find high diversity within and between taxa and clear evidence that taxonomic divergence was reticulate rather than following a simple branching pattern. A scan for diversifying selection across taxa identifies strong and highly polygenic selection signals affecting viral processes. Furthermore, selection scores are elevated in genes whose human orthologs interact with HIV and in genes that show a response to experimental simian immunodeficiency virus (SIV) infection in vervet monkeys but not in rhesus macaques, suggesting that part of the signal reflects taxon-specific adaptation to SIV.
Journal Article
Pathogenic SIV infection is associated with acceleration of epigenetic age in rhesus macaques
by
He, Tianyu
,
Xu, Cuiling
,
Brocca-Cofano, Egidio
in
Acquired immune deficiency syndrome
,
Age factors in disease
,
Aging
2025
HIV infection accelerates biological aging, but the contribution of the host's age to this process is unknown. We investigated the influence of SIV infection in macaques (SIVmac) on the risk of comorbidities and aging in young and old rhesus macaques (RMs) by assessing pathogenesis markers, DNA methylation-based epigenetic age (EA), and EA acceleration (EAA) in blood and tissues. Initially, upon SIV infection, the young RMs showed greater resilience to CD4+ T cell depletion, better control of T cell activation, hypercoagulation, and excessive inflammation, yet this resilience was progressively lost in the advanced stages of infection. During the late stages of infection, the young RMs, but not the aged ones, showed an increase in EA in PBMCs; also, EAA in the cerebellum and heart of young RMs was higher compared with old RMs. SIV infection was more pathogenic in aged animals in early stages, leading to a more rapid disease progression; however, accelerated aging mostly affected young animals, so that the levels of multiple key pathogenesis markers in the young RMs converged toward those specific to aged ones in the late stages of infection. We conclude that SIV infection-driven age acceleration is tissue specific, and that host age influences the susceptibility of different tissues to enhanced aging.
Journal Article
ACE2 and TMPRSS2 variation in savanna monkeys (Chlorocebus spp.): Potential risk for zoonotic/anthroponotic transmission of SARS-CoV-2 and a potential model for functional studies
by
Jasinska, Anna J.
,
Bergey, Christina M.
,
Burt, Felicity
in
ACE2
,
Amino acids
,
Angiotensin-Converting Enzyme 2
2020
The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, has devastated health infrastructure around the world. Both ACE2 (an entry receptor) and TMPRSS2 (used by the virus for spike protein priming) are key proteins to SARS-CoV-2 cell entry, enabling progression to COVID-19 in humans. Comparative genomic research into critical ACE2 binding sites, associated with the spike receptor binding domain, has suggested that African and Asian primates may also be susceptible to disease from SARS-CoV-2 infection. Savanna monkeys (Chlorocebus spp.) are a widespread non-human primate with well-established potential as a bi-directional zoonotic/anthroponotic agent due to high levels of human interaction throughout their range in sub-Saharan Africa and the Caribbean. To characterize potential functional variation in savanna monkey ACE2 and TMPRSS2, we inspected recently published genomic data from 245 savanna monkeys, including 163 wild monkeys from Africa and the Caribbean and 82 captive monkeys from the Vervet Research Colony (VRC). We found several missense variants. One missense variant in ACE2 (X:14,077,550; Asp30Gly), common in Ch. sabaeus, causes a change in amino acid residue that has been inferred to reduce binding efficiency of SARS-CoV-2, suggesting potentially reduced susceptibility. The remaining populations appear as susceptible as humans, based on these criteria for receptor usage. All missense variants observed in wild Ch. sabaeus populations are also present in the VRC, along with two splice acceptor variants (at X:14,065,076) not observed in the wild sample that are potentially disruptive to ACE2 function. The presence of these variants in the VRC suggests a promising model for SARS-CoV-2 infection and vaccine and therapy development. In keeping with a One Health approach, characterizing actual susceptibility and potential for bi-directional zoonotic/anthroponotic transfer in savanna monkey populations may be an important consideration for controlling COVID-19 epidemics in communities with frequent human/non-human primate interactions that, in many cases, may have limited health infrastructure.
Journal Article
Shifts in microbial diversity, composition, and functionality in the gut and genital microbiome during a natural SIV infection in vervet monkeys
by
Freimer, Nelson
,
Katzka, William
,
Cramer, Jennifer Danzy
in
Acute infection
,
Adaptation
,
Animals
2020
Background
The microbiota plays an important role in HIV pathogenesis in humans. Microbiota can impact health through several pathways such as increasing inflammation in the gut, metabolites of bacterial origin, and microbial translocation from the gut to the periphery which contributes to systemic chronic inflammation and immune activation and the development of AIDS. Unlike HIV-infected humans, SIV-infected vervet monkeys do not experience gut dysfunction, microbial translocation, and chronic immune activation and do not progress to immunodeficiency. Here, we provide the first reported characterization of the microbial ecosystems of the gut and genital tract in a natural nonprogressing host of SIV, wild vervet monkeys from South Africa.
Results
We characterized fecal, rectal, vaginal, and penile microbiomes in vervets from populations heavily infected with SIV from diverse locations across South Africa. Geographic site, age, and sex affected the vervet microbiome across different body sites. Fecal and vaginal microbiome showed marked stratification with three enterotypes in fecal samples and two vagitypes, which were predicted functionally distinct within each body site. External bioclimatic factors, biome type, and environmental temperature influenced microbiomes locally associated with vaginal and rectal mucosa. Several fecal microbial taxa were linked to plasma levels of immune molecules, for example, MIG was positively correlated with
Lactobacillus
and
Escherichia
/
Shigella
and
Helicobacter
, and IL-10 was negatively associated with Erysipelotrichaceae, Anaerostipes, Prevotella, and Anaerovibrio, and positively correlated with Bacteroidetes and Succinivibrio. During the chronic phase of infection, we observed a significant increase in gut microbial diversity, alterations in community composition (including a decrease in Proteobacteria/Succinivibrio in the gut) and functionality (including a decrease in genes involved in bacterial invasion of epithelial cells in the gut), and partial reversibility of acute infection-related shifts in microbial abundance observed in the fecal microbiome. As part of our study, we also developed an accurate predictor of SIV infection using fecal samples.
Conclusions
The vervets infected with SIV and humans infected with HIV differ in microbial responses to infection. These responses to SIV infection may aid in preventing microbial translocation and subsequent disease progression in vervets, and may represent host microbiome adaptations to the virus.
2kSCfqxBuBxDgHDfSi19bJ
Video Abstract
Journal Article
Seroprevalence of Zika Virus in Wild African Green Monkeys and Baboons
by
Rogers, Jeffrey
,
Weiler, Andrea M.
,
Jolly, Clifford J.
in
Dengue fever
,
false-positive reactions
,
Flavivirus
2017
Zika virus (ZIKV) is a mosquito-borne virus originally discovered in a captive monkey living in the Zika Forest of Uganda, Africa, in 1947. Recently, an outbreak in South America has shown that ZIKV infection can cause myriad health effects, including birth defects in the children of women infected during pregnancy. Here, we sought to investigate ZIKV infection in wild African primates to better understand its emergence and spread, looking for evidence of active or prior infection. Our results suggest that up to 16% of some populations of nonhuman primate were, at some point, exposed to ZIKV. We anticipate that this study will be useful for future studies that examine the spread of infections from wild animals to humans in general and those studying ZIKV in primates in particular. Zika virus (ZIKV) has recently spread through the Americas and has been associated with a range of health effects, including birth defects in children born to women infected during pregnancy. Although the natural reservoir of ZIKV remains poorly defined, the virus was first identified in a captive “sentinel” macaque monkey in Africa in 1947. However, the virus has not been reported in humans or nonhuman primates (NHPs) in Africa outside Gabon in over a decade. Here, we examine ZIKV infection in 239 wild baboons and African green monkeys from South Africa, the Gambia, Tanzania, and Zambia using combinations of unbiased deep sequencing, quantitative reverse transcription-PCR (qRT-PCR), and an antibody capture assay that we optimized using serum collected from captive macaque monkeys exposed to ZIKV, dengue virus, and yellow fever virus. While we did not find evidence of active ZIKV infection in wild NHPs in Africa, we found variable ZIKV seropositivity of up to 16% in some of the NHP populations sampled. We anticipate that these results and the methodology described within will help in continued efforts to determine the prevalence, natural reservoir, and transmission dynamics of ZIKV in Africa and elsewhere. IMPORTANCE Zika virus (ZIKV) is a mosquito-borne virus originally discovered in a captive monkey living in the Zika Forest of Uganda, Africa, in 1947. Recently, an outbreak in South America has shown that ZIKV infection can cause myriad health effects, including birth defects in the children of women infected during pregnancy. Here, we sought to investigate ZIKV infection in wild African primates to better understand its emergence and spread, looking for evidence of active or prior infection. Our results suggest that up to 16% of some populations of nonhuman primate were, at some point, exposed to ZIKV. We anticipate that this study will be useful for future studies that examine the spread of infections from wild animals to humans in general and those studying ZIKV in primates in particular. Podcast : A podcast concerning this article is available.
Journal Article
Characterization of Expression Quantitative Trait Loci in Pedigrees from Colombia and Costa Rica Ascertained for Bipolar Disorder
by
Teshiba, Terri M.
,
Cantor, Rita M.
,
Reus, Victor I.
in
Alleles
,
Biology and Life Sciences
,
Bipolar disorder
2016
The observation that variants regulating gene expression (expression quantitative trait loci, eQTL) are at a high frequency among SNPs associated with complex traits has made the genome-wide characterization of gene expression an important tool in genetic mapping studies of such traits. As part of a study to identify genetic loci contributing to bipolar disorder and other quantitative traits in members of 26 pedigrees from Costa Rica and Colombia, we measured gene expression in lymphoblastoid cell lines derived from 786 pedigree members. The study design enabled us to comprehensively reconstruct the genetic regulatory network in these families, provide estimates of heritability, identify eQTL, evaluate missing heritability for the eQTL, and quantify the number of different alleles contributing to any given locus. In the eQTL analysis, we utilize a recently proposed hierarchical multiple testing strategy which controls error rates regarding the discovery of functional variants. Our results elucidate the heritability and regulation of gene expression in this unique Latin American study population and identify a set of regulatory SNPs which may be relevant in future investigations of complex disease in this population. Since our subjects belong to extended families, we are able to compare traditional kinship-based estimates with those from more recent methods that depend only on genotype information.
Journal Article
Genetic variation and gene expression across multiple tissues and developmental stages in a nonhuman primate
2017
Nelson Freimer and colleagues analyze gene expression data from multiple tissue samples combined with genotype data from vervet monkeys to catalog expression quantitative trait loci (eQTLs). They generate a transcriptome resource analogous to the GTEx project and perform comparative and eQTL enrichment analyses for various traits.
By analyzing multitissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalog of expression quantitative trait loci (eQTLs) in a nonhuman primate model. This catalog contains more genome-wide significant eQTLs per sample than comparable human resources and identifies sex- and age-related expression patterns. Findings include a master regulatory locus that likely has a role in immune function and a locus regulating hippocampal long noncoding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders.
Journal Article
Immunosuppressive effect and global dysregulation of blood transcriptome in response to psychosocial stress in vervet monkeys (Chlorocebus sabaeus)
2020
Psychosocial stressors - life events that challenge social support and relationships - represent powerful risk factors for human disease; included amongst these events are relocation, isolation and displacement. To evaluate the impact of a controlled psychosocial stressor on physiology and underlying molecular pathways, we longitudinally studied the influence of a 28-day period of quarantine on biomarkers of immune signalling, microbial translocation, glycaemic health and blood transcriptome in the wild-born vervet monkey. This event caused a coordinated, mostly transient, reduction of circulating levels of nine immune signalling molecules. These were paralleled by a massive dysregulation of blood transcriptome, including genes implicated in chronic pathologies and immune functions. Immune and inflammatory functions were enriched among the genes downregulated in response to stress. An upregulation of genes involved in blood coagulation, platelet activation was characteristic of the rapid response to stress induction. Stress also decreased neutrophils and increased CD4 + T cell proportions in blood. This model of psychosocial stress, characterised by an immune dysregulation at the transcriptomic, molecular and cellular levels, creates opportunities to uncover the underlying mechanisms of stress-related diseases with an immune component, including cardiovascular diseases and susceptibility to infections.
Journal Article