Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
149 result(s) for "Jason D. Lieb"
Sort by:
Cisplatin DNA damage and repair maps of the human genome at single-nucleotide resolution
Cisplatin is a major anticancer drug that kills cancer cells by damaging their DNA. Cancer cells cope with the drug by removal of the damages with nucleotide excision repair. We have developed methods to measure cisplatin adduct formation and its repair at single-nucleotide resolution. “Damage-seq” relies on the replication-blocking properties of the bulky base lesions to precisely map their location. “XR-seq” independently maps the removal of these damages by capturing and sequencing the excised oligomer released during repair. The damage and repair maps we generated reveal that damage distribution is essentially uniform and is dictated mostly by the underlying sequence. In contrast, cisplatin repair is heterogeneous in the genome and is affected by multiple factors including transcription and chromatin states. Thus, the overall effect of damages in the genome is primarily driven not by damage formation but by the repair efficiency. The combination of the Damage-seq and XR-seq methods has the potential for developing novel cancer therapeutic strategies.
Genome-wide kinetics of DNA excision repair in relation to chromatin state and mutagenesis
We recently developed a high-resolution genome-wide assay for mapping DNA excision repair named eXcision Repair-sequencing (XR-seq) and have now used XR-seq to determine which regions of the genome are subject to repair very soon after UV exposure and which regions are repaired later. Over a time course, we measured repair of the UV-induced damage of cyclobutane pyrimidine dimers (CPDs) (at 1, 4, 8, 16, 24, and 48 h) and (6-4)pyrimidine-pyrimidone photoproducts [(6-4)PPs] (at 5 and 20 min and 1, 2, and 4 h) in normal human skin fibroblasts. Each type of damage has distinct repair kinetics. The (6-4)PPs are detected as early as 5 min after UV treatment, with the bulk of repair completed by 4 h. Repair of CPDs, which we previously showed is intimately coupled to transcription, is slower and in certain regions persists even 2 d after UV irradiation. We compared our results to the Encyclopedia of DNA Elements data regarding histone modifications, chromatin state, and transcription. For both damage types, and for both transcription-coupled and general excision repair, the earliest repair occurred preferentially in active and open chromatin states. Conversely, repair in regions classified as “heterochromatic” and “repressed” was relatively low at early time points, with repair persisting into the late time points. Damage that remains during DNA replication increases the risk for mutagenesis. Indeed, laterepaired regions are associated with a higher level of cancer-linked mutations. In summary, we show that XR-seq is a powerful approach for studying relationships among chromatin state, DNA repair, genome stability, mutagenesis, and carcinogenesis.
What are super-enhancers?
Jason Lieb and Sebastian Pott review the identification and composition of super-enhancers and ask whether super-enhancers are a new, conceptually distinct regulatory entity. The term 'super-enhancer' has been used to describe groups of putative enhancers in close genomic proximity with unusually high levels of Mediator binding, as measured by chromatin immunoprecipitation and sequencing (ChIP-seq). Here we review the identification and composition of super-enhancers, describe links between super-enhancers, gene regulation and disease, and discuss the functional significance of enhancer clustering. We also provide our perspective regarding the proposition that super-enhancers are a regulatory entity conceptually distinct from what was known before the introduction of the term. Our opinion is that there is not yet strong evidence that super-enhancers are a novel paradigm in gene regulation and that use of the term in this context is not currently justified. However, the term likely identifies strong enhancers that exhibit behaviors consistent with previous models and concepts of transcriptional regulation. In this respect, the super-enhancer definition is useful in identifying regulatory elements likely to control genes important for cell type specification.
High Nucleosome Occupancy Is Encoded at Human Regulatory Sequences
Active eukaryotic regulatory sites are characterized by open chromatin, and yeast promoters and transcription factor binding sites (TFBSs) typically have low intrinsic nucleosome occupancy. Here, we show that in contrast to yeast, DNA at human promoters, enhancers, and TFBSs generally encodes high intrinsic nucleosome occupancy. In most cases we examined, these elements also have high experimentally measured nucleosome occupancy in vivo. These regions typically have high G+C content, which correlates positively with intrinsic nucleosome occupancy, and are depleted for nucleosome-excluding poly-A sequences. We propose that high nucleosome preference is directly encoded at regulatory sequences in the human genome to restrict access to regulatory information that will ultimately be utilized in only a subset of differentiated cells.
A map of open chromatin in human pancreatic islets
Jorge Ferrer, Jason Lieb, and Karen Mohlke and colleagues identify regulatory DNA active in human pancreatic islets by formaldehyde-assisted isolation of regulatory elements (FAIRE) coupled with high-throughput sequencing. They identified 80,000 open chromatin sites and 3,300 islet-selective open chromatin sites and found that a TCF7L2 intronic variant associated with type 2 diabetes is located in islet-selective open chromatin. Tissue-specific transcriptional regulation is central to human disease 1 . To identify regulatory DNA active in human pancreatic islets, we profiled chromatin by formaldehyde-assisted isolation of regulatory elements 2 , 3 , 4 coupled with high-throughput sequencing (FAIRE-seq). We identified ∼80,000 open chromatin sites. Comparison of FAIRE-seq data from islets to that from five non-islet cell lines revealed ∼3,300 physically linked clusters of islet-selective open chromatin sites, which typically encompassed single genes that have islet-specific expression. We mapped sequence variants to open chromatin sites and found that rs7903146, a TCF7L2 intronic variant strongly associated with type 2 diabetes 5 , is located in islet-selective open chromatin. We found that human islet samples heterozygous for rs7903146 showed allelic imbalance in islet FAIRE signals and that the variant alters enhancer activity, indicating that genetic variation at this locus acts in cis with local chromatin and regulatory changes. These findings illuminate the tissue-specific organization of cis -regulatory elements and show that FAIRE-seq can guide the identification of regulatory variants underlying disease susceptibility.
In Vivo Effects of Histone H3 Depletion on Nucleosome Occupancy and Position in Saccharomyces cerevisiae
Previous studies in Saccharomyces cerevisiae established that depletion of histone H4 results in the genome-wide transcriptional de-repression of hundreds of genes. To probe the mechanism of this transcriptional de-repression, we depleted nucleosomes in vivo by conditional repression of histone H3 transcription. We then measured the resulting changes in transcription by RNA-seq and in chromatin organization by MNase-seq. This experiment also bears on the degree to which trans-acting factors and DNA-encoded elements affect nucleosome position and occupancy in vivo. We identified ∼60,000 nucleosomes genome wide, and we classified ∼2,000 as having preferentially reduced occupancy following H3 depletion and ∼350 as being preferentially retained. We found that the in vivo influence of DNA sequences that favor or disfavor nucleosome occupancy increases following histone H3 depletion, demonstrating that nucleosome density contributes to moderating the influence of DNA sequence on nucleosome formation in vivo. To identify factors important for influencing nucleosome occupancy and position, we compared our data to 40 existing whole-genome data sets. Factors associated with promoters, such as histone acetylation and H2A.z incorporation, were enriched at sites of nucleosome loss. Nucleosome retention was linked to stabilizing marks such as H3K36me2. Notably, the chromatin remodeler Isw2 was uniquely associated with retained occupancy and altered positioning, consistent with Isw2 stabilizing histone-DNA contacts and centering nucleosomes on available DNA in vivo. RNA-seq revealed a greater number of de-repressed genes (∼2,500) than previous studies, and these genes exhibited reduced nucleosome occupancy in their promoters. In summary, we identify factors likely to influence nucleosome stability under normal growth conditions and the specific genomic locations at which they act. We find that DNA-encoded nucleosome stability and chromatin composition dictate which nucleosomes will be lost under conditions of limiting histone protein and that this, in turn, governs which genes are susceptible to a loss of regulatory fidelity.
An inverse relationship to germline transcription defines centromeric chromatin in C. elegans
Centromere identity is thought to be epigenetically propagated by stable inheritance of nucleosomes containing the histone variant CENP-A; the authors propose a different model here in which germline transcription defines the genomic regions that exclude CENP-A incorporation during embryogenesis in the holocentric worm Caenorhabditis elegans . Influence of centromeres on transcription Centromere identity is thought to be propagated epigenetically through stable inheritance of nucleosomes containing the histone H3 variant CENP-A. This paper shows that in the holocentric nematode Caenorhabditis elegans , where centromere activity and CENP-A are distributed along the entire length of the chromosome, embryonic CENP-A domains are established in a pattern inverse to genomic regions that are transcribed in the germline. A model is proposed in which germline transcription defines the genomic regions that exclude CENP-A incorporation during embryogenesis. This work links centromere identity to transcription and could help to explain the evolutionary plasticity of centromeres. Centromeres are chromosomal loci that direct segregation of the genome during cell division. The histone H3 variant CENP-A (also known as CenH3) defines centromeres in monocentric organisms, which confine centromere activity to a discrete chromosomal region, and holocentric organisms, which distribute centromere activity along the chromosome length 1 , 2 , 3 . Because the highly repetitive DNA found at most centromeres is neither necessary nor sufficient for centromere function, stable inheritance of CENP-A nucleosomal chromatin is postulated to propagate centromere identity epigenetically 4 . Here, we show that in the holocentric nematode Caenorhabditis elegans pre-existing CENP-A nucleosomes are not necessary to guide recruitment of new CENP-A nucleosomes. This is indicated by lack of CENP-A transmission by sperm during fertilization and by removal and subsequent reloading of CENP-A during oogenic meiotic prophase. Genome-wide mapping of CENP-A location in embryos and quantification of CENP-A molecules in nuclei revealed that CENP-A is incorporated at low density in domains that cumulatively encompass half the genome. Embryonic CENP-A domains are established in a pattern inverse to regions that are transcribed in the germline and early embryo, and ectopic transcription of genes in a mutant germline altered the pattern of CENP-A incorporation in embryos. Furthermore, regions transcribed in the germline but not embryos fail to incorporate CENP-A throughout embryogenesis. We propose that germline transcription defines genomic regions that exclude CENP-A incorporation in progeny, and that zygotic transcription during early embryogenesis remodels and reinforces this basal pattern. These findings link centromere identity to transcription and shed light on the evolutionary plasticity of centromeres.
The Histone H3K36 Methyltransferase MES-4 Acts Epigenetically to Transmit the Memory of Germline Gene Expression to Progeny
Methylation of histone H3K36 in higher eukaryotes is mediated by multiple methyltransferases. Set2-related H3K36 methyltransferases are targeted to genes by association with RNA Polymerase II and are involved in preventing aberrant transcription initiation within the body of genes. The targeting and roles of the NSD family of mammalian H3K36 methyltransferases, known to be involved in human developmental disorders and oncogenesis, are not known. We used genome-wide chromatin immunoprecipitation (ChIP) to investigate the targeting and roles of the Caenorhabditis elegans NSD homolog MES-4, which is maternally provided to progeny and is required for the survival of nascent germ cells. ChIP analysis in early C. elegans embryos revealed that, consistent with immunostaining results, MES-4 binding sites are concentrated on the autosomes and the leftmost approximately 2% (300 kb) of the X chromosome. MES-4 overlies the coding regions of approximately 5,000 genes, with a modest elevation in the 5' regions of gene bodies. Although MES-4 is generally found over Pol II-bound genes, analysis of gene sets with different temporal-spatial patterns of expression revealed that Pol II association with genes is neither necessary nor sufficient to recruit MES-4. In early embryos, MES-4 associates with genes that were previously expressed in the maternal germ line, an interaction that does not require continued association of Pol II with those loci. Conversely, Pol II association with genes newly expressed in embryos does not lead to recruitment of MES-4 to those genes. These and other findings suggest that MES-4, and perhaps the related mammalian NSD proteins, provide an epigenetic function for H3K36 methylation that is novel and likely to be unrelated to ongoing transcription. We propose that MES-4 transmits the memory of gene expression in the parental germ line to offspring and that this memory role is critical for the PGCs to execute a proper germline program.
Heritable Individual-Specific and Allele-Specific Chromatin Signatures in Humans
The extent to which variation in chromatin structure and transcription factor binding may influence gene expression, and thus underlie or contribute to variation in phenotype, is unknown. To address this question, we cataloged both individual-to-individual variation and differences between homologous chromosomes within the same individual (allele-specific variation) in chromatin structure and transcription factor binding in lymphoblastoid cells derived from individuals of geographically diverse ancestry. Ten percent of active chromatin sites were individual-specific; a similar proportion were allele-specific. Both individual-specific and allele-specific sites were commonly transmitted from parent to child, which suggests that they are heritable features of the human genome. Our study shows that heritable chromatin status and transcription factor binding differ as a result of genetic variation and may underlie phenotypic variation in humans.
TRA-1 ChIP-seq reveals regulators of sexual differentiation and multilevel feedback in nematode sex determination
How sexual regulators translate global sexual fate into appropriate local sexual differentiation events is perhaps the least understood aspect of sexual development. Here we have used ChIP followed by deep sequencing (ChIP-seq) to identify direct targets of the nematode global sexual regulator Transformer 1 (TRA-1), a transcription factor acting at the interface between organism-wide and cell-specific sexual regulation to control all sex-specific somatic differentiation events. We identified 184 TRA-1–binding sites in Caenorhabditis elegans , many with temporal- and/or tissue-specific TRA-1 association. We also identified 78 TRA-1–binding sites in the related nematode Caenorhabditis briggsae , 19 of which are conserved between the two species. Some DNA segments containing TRA-1–binding sites drive male-specific expression patterns, and RNAi depletion of some genes adjacent to TRA-1–binding sites results in defects in male sexual development. TRA-1 binds to sites adjacent to a number of heterochronic regulatory genes, some of which drive male-specific expression, suggesting that TRA-1 imposes sex specificity on developmental timing. We also found evidence for TRA-1 feedback regulation of the global sex-determination pathway: TRA-1 binds its own locus and those of multiple upstream masculinizing genes, and most of these associations are conserved in C. briggsae . Thus, TRA-1 coordinates sexual development by reinforcing the sex-determination decision and directing downstream sexual differentiation events.