Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
26
result(s) for
"Jedynak, Maciej"
Sort by:
Tinnitus Perception in Light of a Parietal Operculo–Insular Involvement: A Review
2022
In tinnitus literature, researchers have increasingly been advocating for a clearer distinction between tinnitus perception and tinnitus-related distress. In non-bothersome tinnitus, the perception itself can be more specifically investigated: this has provided a body of evidence, based on resting-state and activation fMRI protocols, highlighting the involvement of regions outside the conventional auditory areas, such as the right parietal operculum. Here, we aim to conduct a review of available investigations of the human parietal operculo–insular subregions conducted at the microscopic, mesoscopic, and macroscopic scales arguing in favor of an auditory–somatosensory cross-talk. Both the previous literature and new results on functional connectivity derived from cortico–cortical evoked potentials show that these subregions present a dense tissue of interconnections and a strong connectivity with auditory and somatosensory areas in the healthy brain. Disrupted integration processes between these modalities may thus result in erroneous perceptions, such as tinnitus. More precisely, we highlight the role of a subregion of the right parietal operculum, known as OP3 according to the Jülich atlas, in the integration of auditory and somatosensory representation of the orofacial muscles in the healthy population. We further discuss how a dysfunction of these muscles could induce hyperactivity in the OP3. The evidence of direct electrical stimulation of this area eliciting auditory hallucinations further suggests its involvement in tinnitus perception. Finally, a small number of neuroimaging studies of therapeutic interventions for tinnitus provide additional evidence of right parietal operculum involvement.
Journal Article
Intermodal Consistency of Whole‐Brain Connectivity and Signal Propagation Delays
2025
ABSTRACT
Measuring propagation of perturbations across the human brain and their transmission delays is critical for network neuroscience, but it is a challenging problem that still requires advancement. Here, we compare results from a recently introduced, noninvasive technique of functional delays estimation from source‐reconstructed electro/magnetoencephalography, to the corresponding findings from a large dataset of cortico‐cortical evoked potentials estimated from intracerebral stimulations of patients suffering from pharmaco‐resistant epilepsies. The two methods yield significantly similar probabilistic connectivity maps and signal propagation delays, in both cases characterized with Pearson correlations greater than 0.5 (when grouping by stimulated parcel is applied for delays). This similarity suggests a correspondence between the mechanisms underpinning the propagation of spontaneously generated scale‐free perturbations (i.e., neuronal avalanches observed in resting state activity studied using magnetoencephalography) and the spreading of cortico‐cortical evoked potentials. This manuscript provides evidence for the accuracy of the estimate of functional delays obtained noninvasively from reconstructed sources.
Conversely, our findings show that estimates obtained from externally induced perturbations in patients capture physiological activities in healthy subjects. In conclusion, this manuscript constitutes a mutual validation between two modalities, broadening their scope of applicability and interpretation. Importantly, the capability to measure delays noninvasively (as per MEG) paves the way for the inclusion of functional delays in personalized large‐scale brain models as well as in diagnostic and prognostic algorithms.
The spatio‐temporal spreading of waves of activities across the brain can be quantified utilizing either intracranial electrodes or, noninvasively, magnetoencephalography. We present to what extent these two different techniques can converge, with respect to the quantification of both the spatial spreading and the corresponding delays.
Journal Article
Probabilistic functional tractography of the human cortex revisited
by
Rocamora, Rodrigo
,
Schulze-Bonhage, Andreas
,
David, Olivier
in
Adolescent
,
Adult
,
Atlases as Topic
2018
In patients with pharmaco-resistant focal epilepsies investigated with intracranial electroencephalography (iEEG), direct electrical stimulations of a cortical region induce cortico-cortical evoked potentials (CCEP) in distant cerebral cortex, which properties can be used to infer large scale brain connectivity. In 2013, we proposed a new probabilistic functional tractography methodology to study human brain connectivity. We have now been revisiting this method in the F-TRACT project (f-tract.eu) by developing a large multicenter CCEP database of several thousand stimulation runs performed in several hundred patients, and associated processing tools to create a probabilistic atlas of human cortico-cortical connections. Here, we wish to present a snapshot of the methods and data of F-TRACT using a pool of 213 epilepsy patients, all studied by stereo-encephalography with intracerebral depth electrodes. The CCEPs were processed using an automated pipeline with the following consecutive steps: detection of each stimulation run from stimulation artifacts in raw intracranial EEG (iEEG) files, bad channels detection with a machine learning approach, model-based stimulation artifact correction, robust averaging over stimulation pulses. Effective connectivity between the stimulated and recording areas is then inferred from the properties of the first CCEP component, i.e. onset and peak latency, amplitude, duration and integral of the significant part. Finally, group statistics of CCEP features are implemented for each brain parcel explored by iEEG electrodes. The localization (coordinates, white/gray matter relative positioning) of electrode contacts were obtained from imaging data (anatomical MRI or CT scans before and after electrodes implantation). The iEEG contacts were repositioned in different brain parcellations from the segmentation of patients' anatomical MRI or from templates in the MNI coordinate system. The F-TRACT database using the first pool of 213 patients provided connectivity probability values for 95% of possible intrahemispheric and 56% of interhemispheric connections and CCEP features for 78% of intrahemisheric and 14% of interhemispheric connections. In this report, we show some examples of anatomo-functional connectivity matrices, and associated directional maps. We also indicate how CCEP features, especially latencies, are related to spatial distances, and allow estimating the velocity distribution of neuronal signals at a large scale. Finally, we describe the impact on the estimated connectivity of the stimulation charge and of the contact localization according to the white or gray matter. The most relevant maps for the scientific community are available for download on f-tract. eu (David et al., 2017) and will be regularly updated during the following months with the addition of more data in the F-TRACT database. This will provide an unprecedented knowledge on the dynamical properties of large fiber tracts in human.
Journal Article
Variability of Single Pulse Electrical Stimulation Responses Recorded with Intracranial Electroencephalography in Epileptic Patients
by
Jedynak, Maciej
,
Bhattacharjee, Manik
,
Tadel, François
in
Brain surgery
,
Electrical stimuli
,
Electrodes
2023
Cohort studies of brain stimulations performed with stereo-electroencephalographic (SEEG) electrodes in epileptic patients allow to derive large scale functional connectivity. It is known, however, that brain responses to electrical or magnetic stimulation techniques are not always reproducible. Here, we study variability of responses to single pulse SEEG electrical stimulation. We introduce a second-order probability analysis, i.e. we extend estimation of connection probabilities, defined as the proportion of responses trespassing a statistical threshold (determined in terms of Z-score with respect to spontaneous neuronal activity before stimulation) over all responses and derived from a number of individual measurements, to an analysis of pairs of measurements.Data from 445 patients were processed. We found that variability between two equivalent measurements is substantial in particular conditions. For long ( > ~ 90 mm) distances between stimulating and recording sites, and threshold value Z = 3, correlation between measurements drops almost to zero. In general, it remains below 0.5 when the threshold is smaller than Z = 4 or the stimulating current intensity is 1 mA. It grows with an increase of either of these factors. Variability is independent of interictal spiking rates in the stimulating and recording sites.We conclude that responses to SEEG stimulation in the human brain are variable, i.e. in a subject at rest, two stimulation trains performed at the same electrode contacts and with the same protocol can give discrepant results. Our findings highlight an advantage of probabilistic interpretation of such results even in the context of a single individual.
Journal Article
Temporally correlated fluctuations drive epileptiform dynamics
2017
Macroscopic models of brain networks typically incorporate assumptions regarding the characteristics of afferent noise, which is used to represent input from distal brain regions or ongoing fluctuations in non-modelled parts of the brain. Such inputs are often modelled by Gaussian white noise which has a flat power spectrum. In contrast, macroscopic fluctuations in the brain typically follow a 1/fb spectrum. It is therefore important to understand the effect on brain dynamics of deviations from the assumption of white noise. In particular, we wish to understand the role that noise might play in eliciting aberrant rhythms in the epileptic brain. To address this question we study the response of a neural mass model to driving by stochastic, temporally correlated input. We characterise the model in terms of whether it generates \"healthy\" or \"epileptiform\" dynamics and observe which of these dynamics predominate under different choices of temporal correlation and amplitude of an Ornstein-Uhlenbeck process. We find that certain temporal correlations are prone to eliciting epileptiform dynamics, and that these correlations produce noise with maximal power in the δ and θ bands. Crucially, these are rhythms that are found to be enhanced prior to seizures in humans and animal models of epilepsy. In order to understand why these rhythms can generate epileptiform dynamics, we analyse the response of the model to sinusoidal driving and explain how the bifurcation structure of the model gives rise to these findings. Our results provide insight into how ongoing fluctuations in brain dynamics can facilitate the onset and propagation of epileptiform rhythms in brain networks. Furthermore, we highlight the need to combine large-scale models with noise of a variety of different types in order to understand brain (dys-)function.
This work was supported by the European Commission through the FP7 Marie Curie Initial Training Network 289146 (NETT: Neural Engineering Transformative Technologies), by the Spanish Ministry of Economy and Competitiveness and FEDER (project FIS2015-66503-C3-1-P). J.G.O. also acknowledges support from the ICREA Academia programme, the Generalitat de Catalunya (project 2014SGR0947), and the “María de Maeztu” Programme for Units of Excellence in R&D (Spanish Ministry of Economy and Competitiveness, MDM-2014-0370). M.G. gratefully acknowledges the financial support of the EPSRC via grant EP/N014391/1. The contribution of M.G. was generously supported by a Wellcome Trust Institutional Strategic Support Award (WT105618MA)
Journal Article
Temporally correlated fluctuations drive epileptiform dynamics
by
Jedynak, Maciej
,
Pons, Antonio J.
,
Garcia-Ojalvo, Jordi
in
Animal models
,
Brain
,
Brain stimulation
2017
Macroscopic models of brain networks typically incorporate assumptions regarding the characteristics of afferent noise, which is used to represent input from distal brain regions or ongoing fluctuations in non-modelled parts of the brain. Such inputs are often modelled by Gaussian white noise which has a flat power spectrum. In contrast, macroscopic fluctuations in the brain typically follow a 1/fb spectrum. It is therefore important to understand the effect on brain dynamics of deviations from the assumption of white noise. In particular, we wish to understand the role that noise might play in eliciting aberrant rhythms in the epileptic brain.
To address this question we study the response of a neural mass model to driving by stochastic, temporally correlated input. We characterise the model in terms of whether it generates “healthy” or “epileptiform” dynamics and observe which of these dynamics predominate under different choices of temporal correlation and amplitude of an Ornstein-Uhlenbeck process. We find that certain temporal correlations are prone to eliciting epileptiform dynamics, and that these correlations produce noise with maximal power in the δ and θ bands. Crucially, these are rhythms that are found to be enhanced prior to seizures in humans and animal models of epilepsy. In order to understand why these rhythms can generate epileptiform dynamics, we analyse the response of the model to sinusoidal driving and explain how the bifurcation structure of the model gives rise to these findings. Our results provide insight into how ongoing fluctuations in brain dynamics can facilitate the onset and propagation of epileptiform rhythms in brain networks. Furthermore, we highlight the need to combine large-scale models with noise of a variety of different types in order to understand brain (dys-)function.
•We use Jansen-Rit model under stochastic and periodic driving to study ictogenesis.•Correlation time of the driving noise modulates characteristic of the model's output.•Driving with delta/theta rhythms is most prone to initiate epileptic activity.
Journal Article
Stimulus induced resonance in a neural mass model driven with a temporally correlated noise
2015
Poster presentation at 24th Annual Computational Neuroscience Meeting: CNS*2015
This work was supported by the European Commission through the FP7 Marie Curie Initial Training Network 289146 (NETT: Neural Engineering Transformative Technologies), and by the Ministerio de Economia y Competividad (Spain, project FIS2012-37655). JGO acknowledges support from the ICREA Academia program.
Journal Article
Cross-frequency transfer in a stochastically driven mesoscopic neuronal model
by
Jedynak, Maciej
,
García Ojalvo, Jordi
,
Pons, Antonio J
in
Cognició
,
Cross-frequency coupling
,
Driven oscillators
2015
The brain is known to operate in multiple coexisting frequency bands. Increasing experimental evidence suggests that interactions between those distinct bands play a crucial role in brain processes, but the dynamical mechanisms underlying this cross-frequency coupling are still under investigation. Two approaches have been proposed to address this issue. In the first one distinct nonlinear oscillators representing the brain rhythms involved are coupled actively (bidirectionally), whereas in the second one the oscillators are coupled unidirectionally and thus the driving between them is passive. Here we elaborate the latter approach by implementing a stochastically driven network of coupled neural mass models that operate in the alpha range. This model exhibits a broadband power spectrum with 1/f(b) form, similar to those observed experimentally. Our results show that such a model is able to reproduce recent experimental observations on the effect of slow rocking on the alpha activity associated with sleep. This suggests that passive driving can account for cross-frequency transfer in the brain, as a result of the complex nonlinear dynamics of its underlying oscillators.
This work was supported by the European Commission through the FP7 Marie Curie Initial Training Network 289146 (NETT: Neural Engineering Transformative Technologies), and the Ministerio de Economia y Competividad (Spain, project FIS2012-37655). JGO acknowledges support from the ICREA Academia programme.
Journal Article