Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
272
result(s) for
"Jeffries, Thomas"
Sort by:
Microbial diversity drives multifunctionality in terrestrial ecosystems
by
Delgado-Baquerizo, Manuel
,
Jeffries, Thomas C.
,
Reich, Peter B.
in
631/158/2445
,
631/158/670
,
631/326/2565/855
2016
Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.
The role of microbial diversity in ecosystems is less well understood than, for example, that of plant diversity. Analysing two independent data sets at a global and regional scale, Delgado-Baquerizo
et al
. show positive effects of soil diversity on multiple terrestrial ecosystem functions.
Journal Article
Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships
2016
A lack of empirical evidence for the microbial regulation of ecosystem processes, including carbon (C) degradation, hinders our ability to develop a framework to directly incorporate the genetic composition of microbial communities in the enzyme-driven Earth system models. Herein we evaluated the linkage between microbial functional genes and extracellular enzyme activity in soil samples collected across three geographical regions of Australia. We found a strong relationship between different functional genes and their corresponding enzyme activities. This relationship was maintained after considering microbial community structure, total C and soil pH using structural equation modelling. Results showed that the variations in the activity of enzymes involved in C degradation were predicted by the functional gene abundance of the soil microbial community (
R
2
>0.90 in all cases). Our findings provide a strong framework for improved predictions on soil C dynamics that could be achieved by adopting a gene-centric approach incorporating the abundance of functional genes into process models.
Journal Article
Increasing aridity reduces soil microbial diversity and abundance in global drylands
by
Jeffries, Thomas C.
,
Gaitán, Juan
,
Huber-Sannwald, Elisabeth
in
Arid zones
,
Ascomycota
,
Bacteria
2015
Soil bacteria and fungi play key roles in the functioning of terrestrial ecosystems, yet our understanding of their responses to climate change lags significantly behind that of other organisms. This gap in our understanding is particularly true for drylands, which occupy ∼41% of Earth´s surface, because no global, systematic assessments of the joint diversity of soil bacteria and fungi have been conducted in these environments to date. Here we present results from a study conducted across 80 dryland sites from all continents, except Antarctica, to assess how changes in aridity affect the composition, abundance, and diversity of soil bacteria and fungi. The diversity and abundance of soil bacteria and fungi was reduced as aridity increased. These results were largely driven by the negative impacts of aridity on soil organic carbon content, which positively affected the abundance and diversity of both bacteria and fungi. Aridity promoted shifts in the composition of soil bacteria, with increases in the relative abundance ofChloroflexiand α-Proteobacteriaand decreases inAcidobacteriaandVerrucomicrobia. Contrary to what has been reported by previous continental and global-scale studies, soil pH was not a major driver of bacterial diversity, and fungal communities were dominated byAscomycota. Our results fill a critical gap in our understanding of soil microbial communities in terrestrial ecosystems. They suggest that changes in aridity, such as those predicted by climate-change models, may reduce microbial abundance and diversity, a response that will likely impact the provision of key ecosystem services by global drylands.
Journal Article
Microbial richness and composition independently drive soil multifunctionality
by
Delgado-Baquerizo, Manuel
,
Jeffries, Thomas C.
,
Trivedi, Pankaj
in
Actinobacteria
,
Australia
,
Bacteria
2017
Soil microbes provide multiple ecosystem functions such as nutrient cycling, decomposition and climate regulation. However, we lack a quantitative understanding of the relative importance of microbial richness and composition in controlling multifunctionality. This knowledge gap limits our capacity to understand the influence of biotic attributes in the provision of services and functions on which humans depend. We used two independent approaches (i.e. experimental and observational), and applied statistical modelling to identify the role and relative importance of bacterial richness and composition in driving multifunctionality (here defined as seven measures of respiration and enzyme activities). In the observational study, we measured soil microbial communities and functions in both tree‐ and bare soil‐dominated microsites at 22 locations across a 1,200 km transect in southeastern Australia. In the experimental study we used soils from two of those locations and developed gradients of bacterial diversity and composition through inoculation of sterilized soils. Microbial richness and the relative abundance of Gammaproteobacteria, Actinobacteria, and Bacteroidetes were positively related to multifunctionality in both the observational and experimental approaches; however, only Bacteroidetes was consistently selected as a key predictor of multifunctionality across all experimental approaches and statistical models used here. Moreover, our results, from two different approaches, provide evidence that microbial richness and composition are both important, yet independent, drivers of multiple ecosystem functions. Overall, our findings advance our understanding of the mechanisms underpinning relationships between microbial diversity and ecosystem functionality in terrestrial ecosystems, and further suggest that information on microbial richness and composition needs to be considered when formulating sustainable management and conservation policies, and when predicting the effects of global change on ecosystem functions. A plain language summary is available for this article. Plain Language Summary
Journal Article
Carbon content and climate variability drive global soil bacterial diversity patterns
by
Delgado-Baquerizo, Manuel
,
Hamonts, Kelly
,
Jeffries, Thomas C.
in
Acidobacteria
,
Actinobacteria
,
altitude
2016
Despite the vital role of microorganisms for ecosystem functioning and human welfare, our understanding of their global diversity and biogeographical patterns lags significantly behind that of plants and animals. We conducted a meta-analysis including ~600 soil samples from all continents to evaluate the biogeographical patterns and drivers of bacterial diversity in terrestrial ecosystems at the global scale. Similar to what has been found with plants and animals, the diversity of soil bacteria in the Southern Hemisphere decreased from the equator to Antarctica. However, soil bacteria showed similar levels of diversity across the Northern Hemisphere. The composition of bacterial communities followed dissimilar patterns between hemispheres, as the Southern and Northern Hemispheres were dominated by Actinobacteria and Acidobacteria, respectively. However, Proteobacteria was co-dominant in both hemispheres. Moreover, we found a decrease in soil bacterial diversity with altitude. Climatic features (e.g., high diurnal temperature range and low temperature) were correlated with the lower diversity found at high elevations, but geographical gradients in soil total carbon and species turnover were important drivers of the observed latitudinal patterns. We thus found both parallels and differences in the biogeographical patterns of aboveground vs. soil bacterial diversity. Our findings support previous studies that highlighted soil pH, spatial influence, and organic matter as important drivers of bacterial diversity and composition. Furthermore, our results provide a novel integrative view of how climate and soil factors influence soil bacterial diversity at the global scale, which is critical to improve ecosystem and earth system simulation models and for formulating sustainable ecosystem management and conservation policies.
Journal Article
Biocrust-forming mosses mitigate the impact of aridity on soil microbial communities in drylands
by
Matthew A. Bowker
,
David J. Eldridge
,
Fernando T. Maestre
in
Abundance
,
Aquatic plants
,
arid lands
2018
Recent research indicates that increased aridity linked to climate change will reduce the diversity of soil microbial communities and shift their community composition in drylands, Earth’s largest biome. However, we lack both a theoretical framework and solid empirical evidence of how important biotic components from drylands, such as biocrust-forming mosses, will regulate the responses of microbial communities to expected increases in aridity with climate change.
Here we report results from a cross-continental (North America, Europe and Australia) survey of 39 locations from arid to humid ecosystems, where we evaluated how biocrust-forming mosses regulate the relationship between aridity and the community composition and diversity of soil bacteria and fungi in dryland ecosystems.
Increasing aridity was negatively related to the richness of fungi, and either positively or negatively related to the relative abundance of selected microbial phyla, when biocrust-forming mosses were absent. Conversely, we found an overall lack of relationship between aridity and the relative abundance and richness of microbial communities under biocrust-forming mosses.
Our results suggest that biocrust-forming mosses mitigate the impact of aridity on the community composition of globally distributed microbial taxa, and the diversity of fungi. They emphasize the importance of maintaining biocrusts as a sanctuary for soil microbes in drylands.
Journal Article
A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.)
2019
Marine Group II (MGII) archaea represent the most abundant planktonic archaeal group in ocean surface waters, but our understanding of the group has been limited by a lack of cultured representatives and few sequenced genomes. Here, we conducted a comparative phylogenomic analysis of 270 recently available MGII metagenome-assembled genomes (MAGs) to investigate their evolution and ecology. Based on a rank-normalised genome phylogeny, we propose that MGII is an order-level lineage for which we propose the name
Candidatus
Poseidoniale
s
(after Gr. n. Poseidon, God of the sea), comprising the families
Candidatus
Poseidonaceae fam. nov. (formerly subgroup MGIIa) and
Candidatus
Thalassarchaeaceae fam. nov. (formerly subgroup MGIIb). Within these families, 21 genera could be resolved, many of which had distinct biogeographic ranges and inferred nutrient preferences. Phylogenetic analyses of key metabolic functions suggest that the ancestor of
Ca
. Poseidoniales was a surface water-dwelling photoheterotroph that evolved to occupy multiple related ecological niches based primarily on spectral tuning of proteorhodopsin genes. Interestingly, this adaptation appears to involve an overwrite mechanism whereby an existing single copy of the proteorhodopsin gene is replaced by a horizontally transferred copy, which in many instances should allow an abrupt change in light absorption capacity. Phototrophy was lost entirely from five
Ca
. Poseidoniales genera coinciding with their adaptation to deeper aphotic waters. We also report the first instances of nitrate reductase in two genera acquired via horizontal gene transfer (HGT), which was a potential adaptation to oxygen limitation. Additional metabolic traits differentiating families and genera include flagellar-based adhesion, transporters, and sugar, amino acid, and peptide degradation. Our results suggest that HGT has shaped the evolution of
Ca
. Poseidoniales to occupy a variety of ecological niches and to become the most successful archaeal lineage in ocean surface waters.
Journal Article
Microbial Evolution in Allodapine Bees: Perspectives From Trophallactic, Socially Plastic Pollinators
2025
This review seeks a deeper functional understanding of wild bee microbiomes by focusing on a tribe of bees where natural history and behavioral ecology are well known but investigations of microbiology are just beginning. Opportunities to improve our future knowledge of pathogens to insect pollinators are explored—which have broad ramifications for crop pollination services, considering the current overdependence on a few managed species that face a multitude of health threats. The bee tribe Allodapini (Apidae: Xylocopinae) has the potential to offer comparative insights on the evolution of bee microbiomes, owing to a unique combination of life history traits relevant to pollination service delivery across sub‐Saharan Africa, Southern Asia, and Australia. Allodapines exhibit facultatively social colony organization that offer evolutionary perspectives on the formation of group living not afforded by obligately eusocial insects, which have already transgressed the solitary‐social threshold. Progressive provisioning of brood (in the absence of brood cells) facilitates a network exchange of nutrients (via trophallaxis) that we speculate may culminate in an intra‐colony “network microbiome”. A literature review of pathogenic (bacterial, fungal, viral, and protozoan) associates of allodapine bees reveals considerably less research than for carpenter (Ceratina, Xylocopa), bumble (Bombus), and honey (Apis) bees. Interrogation of published genomes (Exoneura, Exoneurella) discovered novel microsporidian and protozoan parasites and relatives of known bee bacteria (Commensalibacter, Sodalis). Some Xylocopa exhibit microbial profiles typical of corbiculate bee core gut microbiomes, but no comparative evidence among allodapines was found. Allodapines visit flowers of 13 horticultural crops (fruits, vegetables, oilseeds, tree‐nuts) and 50 native genera (predominantly Myrtaceae, Proteacae, Myoporaceae, Goodeniaceae). The ability to parse intrinsic and extrinsic factors influencing microbiome patterns within and between species means that allodapine bees provide the opportunity for an integrated approach to bee socio‐eco‐evo‐immunology.
Journal Article
Changes in the Human Gut Microbiome during Dietary Supplementation with Modified Rice Bran Arabinoxylan Compound
2023
This study investigated the effects of a modified rice bran arabinoxylan compound (RBAC) as a dietary supplement on the gut microbiota of healthy adults. Ten volunteers supplemented their diet with 1 g of RBAC for six weeks and 3 g of RBAC for another six weeks, with a three-week washout period. Faecal samples were collected every 3 weeks over 21 weeks. Microbiota from faecal samples were profiled using 16S rRNA sequencing. Assessment of alpha and beta microbiota diversity was performed using the QIIME2 platform. The results revealed that alpha and beta diversity were not associated with the experimental phase, interventional period, RBAC dosage, or time. However, the statistical significance of the participant was detected in alpha (p < 0.002) and beta (weighted unifrac, p = 0.001) diversity. Explanatory factors, including diet and lifestyle, were significantly associated with alpha (p < 0.05) and beta (p < 0.01) diversity. The individual beta diversity of six participants significantly changed (p < 0.05) during the interventional period. Seven participants showed statistically significant taxonomic changes (ANCOM W ≥ 5). These results classified four participants as responders to RBAC supplementation, with a further two participants as likely responders. In conclusion, the gut microbiome is highly individualised and modulated by RBAC as a dietary supplement, dependent on lifestyle and dietary intake.
Journal Article
Severe Prolonged Drought Favours Stress-Tolerant Microbes in Australian Drylands
2023
Drylands comprise one-third of Earth’s terrestrial surface area and support over two billion people. Most drylands are projected to experience altered rainfall regimes, including changes in total amounts and fewer but larger rainfall events interspersed by longer periods without rain. This transition will have ecosystem-wide impacts but the long-term effects on microbial communities remain poorly quantified. We assessed belowground effects of altered rainfall regimes (+ 65% and -65% relative to ambient) at six sites in arid and semi-arid Australia over a period of three years (2016–2019) coinciding with a significant natural drought event (2017–2019). Microbial communities differed significantly among semi-arid and arid sites and across years associated with variation in abiotic factors, such as pH and carbon content, along with rainfall. Rainfall treatments induced shifts in microbial community composition only at a subset of the sites (Milparinka and Quilpie). However, differential abundance analyses revealed that several taxa, including Acidobacteria, TM7, Gemmatimonadates and Chytridiomycota, were more abundant in the wettest year (2016) and that their relative abundance decreased in drier years. By contrast, the relative abundance of oligotrophic taxa such as Actinobacteria, Alpha-proteobacteria, Planctomycetes, and Ascomycota and Basidiomycota, increased during the prolonged drought. Interestingly, fungi were shown to be more sensitive to the prolonged drought and to rainfall treatment than bacteria with Basidiomycota mostly dominant in the reduced rainfall treatment. Moreover, correlation network analyses showed more positive associations among stress-tolerant dominant taxa following the drought (i.e., 2019 compared with 2016). Our result indicates that such stress-tolerant taxa play an important role in how whole communities respond to changes in aridity. Such knowledge provides a better understanding of microbial responses to predicted increases in rainfall variability and the impact on the functioning of semi-arid and arid ecosystems.
Journal Article